Saving seeds the right way can save the world's plants

July 30, 2014

KNOXVILLE--Exotic pests, shrinking ranges and a changing climate threaten some of the world's most rare and ecologically important plants, and so conservationists establish seed collections to save the seeds in banks or botanical gardens in hopes of preserving some genetic diversity.

For decades, these seed collections have been guided by simple models that offer a one-size-fits-all approach for how many seeds to gather, such as recommending saving 50 seed samples regardless of species' pollination mode, growth habitat and population size.

A new study, however, has found that more careful tailoring of seed collections to specific species and situations is critical to preserving plant diversity. Once seeds are saved, they can be reintroduced for planting in suitable locations if conditions are favorable.

In the study, researchers from the National Institute for Mathematical and Biological Synthesis and the University of Tennessee used a novel approach called simulation-based planning to make several new sampling recommendations, confirming that a uniform approach to seed sampling is ineffective.

First, collectors must choose their plant populations from a wide area rather than a restricted one. Sampling widely can capture up to nearly 200 percent more rare genes than restricted sampling.

In addition, in most situations, collecting from about 25 maternal plants per population versus 50 plants appears to capture the vast majority of genetic variation.

The study also showed that for many species, collecting more than eight to ten seeds per plant leads to high overlap in genetic diversity and would thus be an excess of effort.

Increasing concerns over agriculture and food security as well as an increasing recognition of how fast biodiversity is disappearing has prompted seed banks to ramp up their collections. By the same token, botanic gardens that were once more focused on showcasing plants are now increasingly having a conservation mission too, according to the study's lead author Sean Hoban, a postdoctoral fellow at NIMBioS.

"Our approach can be used to further refine seed collection guidelines, which could lead to much more efficient and effective collections, allowing us to preserve more diversity of the world's plants. These collections could benefit future ecosystem restoration projects as well as improve agricultural and forestry efforts," Hoban said.

Hoban and his colleagues are now working on ways to custom-tailor seed collections to particular species' dispersal, mating system and biology.

The study was published in the journal Biological Conservation.
-end-
Citation: Hoban S, Schlarbaum S. Optimal sampling of seeds from plant populations for ex-situ conservation of genetic biodiversity, considering realistic population structure. Biological Conservation 177: 90-99. DOI: 10.1016/j.biocon.2014.06.014.

The National Institute for Mathematical and Biological Synthesis is an NSF-supported center that brings together researchers from around the world to collaborate across disciplinary boundaries to investigate solutions to basic and applied problems in the life sciences.

To learn more, visit http://www.nimbios.org.

National Institute for Mathematical and Biological Synthesis (NIMBioS)

Related Genetic Diversity Articles from Brightsurf:

In the Cerrado, topography explains the genetic diversity of amphibians more than land cover
Study shows that a tree frog endemic to a mountainous region of the Brazilian savanna is unable to disperse and find genetically closer mates when the terrain is rugged, potentially endangering survival of the species

New DNA sequencing technique may help unravel genetic diversity of cancer tumors
Understanding the genetic diversity of individual cells within a cancer tumor and how that might impact the disease progression has remained a challenge, due to the current limitations of genomic sequencing.

Researchers uncover the arks of genetic diversity in terrestrial mammals
Mapping the distribution of life on Earth, from genes to species to ecosystems, is essential in informing conservation policies and protecting biodiversity.

Seahorse and pipefish study by CCNY opens window to marine genetic diversity May 08, 2020
The direction of ocean currents can determine the direction of gene flow in rafting species, but this depends on species traits that allow for rafting propensity.

Study helps arboreta, botanical gardens meet genetic diversity conservation goals
In a groundbreaking study, an international team of 21 scientists evaluated five genera spanning the plant tree of life (Hibiscus, Magnolia, Pseudophoenix, Quercus and Zamia) to understand how much genetic diversity currently exists in collections in botanical gardens and arboreta worldwide.

Study reveals rich genetic diversity of Vietnam
In a new paper, Dang Liu, Mark Stoneking and colleagues have analyzed newly generated genome-wide SNP data for the Kinh and 21 additional ethnic groups in Vietnam, encompassing all five major language families in MSEA, along with previously published data from nearby populations and ancient samples.

Coastal pollution reduces genetic diversity of corals, reef resilience
A new study by researchers at the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology found that human-induced environmental stressors have a large effect on the genetic composition of coral reef populations in Hawai'i.

New world map of fish genetic diversity
An international research team from ETH Zurich and French universities has studied genetic diversity among fish around the world for the first time.

Texas A&M study reveals domestic horse breed has third-lowest genetic diversity
A new study by Dr. Gus Cothran, professor emeritus at the Texas A&M School of Veterinary Medicine & Biomedical Sciences, has found that the Cleveland Bay horse breed has the third-lowest genetic variation level of domestic horses, ranking above only the notoriously inbred Friesian and Clydesdale breeds.

Genetic diversity facilitates cancer therapy
Cancer patients with more different HLA genes respond better to treatment.

Read More: Genetic Diversity News and Genetic Diversity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.