GRAVITY confirms predictions of general relativity

July 30, 2018

Sagittarius A* (Sgr A*) sits at the centre of our galaxy, 26,000 light-years from Earth. This black hole, which has a mass 4 million times that of the sun, is surrounded by a star cluster - the S stars - which reach mind-boggling speeds when they approach the hole. General relativity describes the effects of matter on the movement of stars, and more specifically, in this case, the effects of a black hole on the stars surrounding it. The stars of Sgr A*, located in the Milky Way's most powerful gravitational field, are a perfect laboratory in which to test Einstein's general theory of relativity.

Astronomers used three VLTs - NACO, SINFONI, and more recently GRAVITY - to follow one particular star in the Sgr A* system - S2 - before and after it passed close to the black hole on 19 May 2018. GRAVITY achieved a resolution of 50 microarcseconds: the angle at which a tennis ball placed on the moon would be visible from Earth. This accuracy made it possible to detect the hour-by-hour movement of S2 as close as possible to the black hole. When S2 passed by Sgr A* at a distance just 120 times that of the Earth from the Sun, it reached an orbital velocity of 8000 km/s: 2.7 % of the speed of light. These extreme conditions suffice for the S2 star to be subjected to the effects of general relativity.

By combining previous measurements made using NACO and SINFONI with GRAVITY's precision on the position of S2, astronomers were able to detect the gravitational redshift which Einstein predicted. Redshift affects light sources that are in a gravitational field; in this case, the black hole. The phenomenon produces a shift in wavelength toward the red part of the spectrum which is detected by a measuring instrument. This is the first time the effect has been measured in the gravitational field of a black hole.

These results are perfectly in line with the theory of general relativity (and not explained by Newton's theory, which excludes such a shift). They are a major breakthrough towards better understanding the effects of intense gravitational fields. Shifts in the trajectory of S2 due to gravity will be detected in a few months, and could yield information on mass distribution around the black hole.
-end-


CNRS

Related Black Hole Articles from Brightsurf:

Black hole or no black hole: On the outcome of neutron star collisions
A new study lead by GSI scientists and international colleagues investigates black-hole formation in neutron star mergers.

The black hole always chirps twice: New clues deciphering the shape of black holes
A team of gravitational-wave scientists led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) reveal that when two black holes collide and merge, the remnant black hole 'chirps' not once, but multiple times, emitting gravitational waves--intense ripples in the fabric space and time--that inform us about its shape.

Wobbling shadow of the M87 black hole
New analysis from the Event Horizon Telescope (EHT) Collaboration reveals the behavior of the supermassive black hole in the center of the M87 galaxy across multiple years, indicating the crescent-like shadow feature appears to be wobbling.

How to have a blast like a black hole
Scientists at Osaka University have created magnetized-plasma conditions similar to those near a black hole using very intense laser pulses.

Black hole collision may have exploded with light
Astronomers have seen what appears to the first light ever detected from a black hole merger.

Black hole's heart still beating
The first confirmed heartbeat of a supermassive black hole is still going strong more than ten years after first being observed.

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.

Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.

Read More: Black Hole News and Black Hole Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.