New approach to terpene syntheses

July 30, 2018

Terpenes are natural products that are often very difficult to synthesize in the laboratory. Chemists from the University of Basel have now developed a synthesis method that mimics nature. The decisive step takes place inside a molecular capsule, which enables the reaction. The findings were recently published in the journal Nature Catalysis.

Terpenes are the largest class of chemical compounds that are found in nature. They include, for example, many essential oils, steroids and clinically relevant substances such as the antimalarial drug artemisinin or the chemotherapy medication paclitaxel.

Despite increasingly refined synthesis methods, chemists have found it very difficult to synthesize these structurally complex compounds in the lab. The process often requires numerous, not always selective synthesis steps, and the yields tend to be low.

Nature points the way

The research group led by Professor Konrad Tiefenbacher from the University of Basel's Department of Chemistry has now developed a synthesis concept for terpenes copied from nature.

The decisive step takes place in the cavity of a spherical compound - known as a molecular capsule. The resorcinarene capsule used has been known about for around 20 years but its catalytic effect has only very recently been described, by Tiefenbacher and others. In organic solvents, the capsule forms itself from six smaller, ring-shaped compounds with the help of hydrogen bonds.

In a similar way to nature, the researchers led by Tiefenbacher begin with a starting material for the synthesis, which is enclosed by the capsule. The capsule environment then enables the formation of the terpene. In addition, control elements previously integrated into the precursor help avoid unwanted side effects and direct the transformation towards the desired product.

Proven applicability

The applicability of the concept was proven by the four-step synthesis of the natural product isolongifolene, with the formation of a ring-shaped terpene compound catalyzed by the capsule as the key step. This succeeded - when compared with conventional syntheses - in significantly fewer steps and with a good yield. Using labeled precursors and with the help of computer simulations, the Basel chemists were also able to clarify the reaction mechanism.

"Our next goal is to use capsules as an artificial enzyme in the creation of even more complex terpenes," says Professor Tiefenbacher. "In order to do so, we must learn to better control the spatial arrangement of the precursor within the capsule, either by modifying the existing system or by developing new catalysts." This may open up new ways of synthesizing terpene compounds that would otherwise not be readily accessible.
-end-


University of Basel

Related Natural Products Articles from Brightsurf:

New nitrogen products are in the air
A nifty move with nitrogen has brought the world one step closer to creating a range of useful products -- from dyes to pharmaceuticals -- out of thin air.

How do bacteria build up natural products?
The active agents of many drugs are natural products, so called because often only microorganisms are able to produce the complex structures.

Live Biotherapeutic products -- a new regulatory approach for the safety assessment of a specific category of biological medicinal products
These exist complex challenges when developing Live Biotherapeutic Products (LBPs).

Even natural products can be harmful for the unborn child
Plant products ingested by pregnant women through their diet are broken down by the intestinal microbiota into chemical substances, some of which can cross the placental barrier and reach the fetus.

Determining the atomic structure of natural products more rapidly and accurately
Many drugs are derived from natural products. But before natural products can be exploited, chemists must first determine their structure and stereochemistry.

A new strategy for the synthesis of complex natural products
Chemists from the University of Basel have succeeded in synthesizing two complex natural products from the group of dithiodiketopiperazines (DTPs).

Fighting drug resistance with fast, artificial enhancement of natural products
Japanese researchers have identified multiple promising new drug candidates to treat antibiotic-resistant infections, including superbugs.

Hydrogen-natural gas hydrates harvested by natural gas
A recent study has suggested a new strategy for stably storing hydrogen, using natural gas as a stabilizer.

An unnatural way to make natural products
Researchers have developed an innovative new process for synthesizing isoprenoids, which are chemical compounds used in countless pharmaceutical and consumer products.

En route to custom-designed natural products
Microorganisms often assemble natural products similar to industrial assembly lines.

Read More: Natural Products News and Natural Products Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.