Magnetic nanoparticles deliver chemotherapy to difficult-to-reach spinal tumors

July 30, 2018

Researchers at the University of Illinois at Chicago have demonstrated that magnetic nanoparticles can be used to ferry chemotherapy drugs into the spinal cord to treat hard-to-reach spinal tumors in an animal model. The unique delivery system represents a novel way to target chemotherapy drugs to spinal cancer cells, which are hard to reach because the drugs must cross the blood-brain barrier.

Spinal cord tumors are a challenge to treat because they are difficult to surgically remove due to their proximity to healthy spinal tissue and because chemotherapy drugs must cross the blood-brain barrier in order to reach them. Intramedullary spinal cord tumors account for 8 percent to 10 percent of all spinal cord tumors and are common among children and adolescents. Average survival for patients with these tumors is 15.5 months.

Doxorubicin, a commonly used chemotherapy to treat spinal tumors, is delivered intravenously and affects the whole body with poor penetration to the spine. Radiation therapy is also problematic for these tumors because the radiation often damages healthy nearby spinal tissue and can have devastating effects, including paraplegia.

"Getting chemotherapy drugs to spinal tumors has always been a problem," said Dr. Ankit Mehta, assistant professor of neurosurgery and director of spinal oncology in the UIC College of Medicine and corresponding author on the paper. "But we can precisely guide chemotherapy to cancer cells into the spinal cord using magnetic nanoparticles."

The researchers, whose results are published in the journal Scientific Reports, used a unique rat model with implanted human intramedullary spinal cord tumors to show that magnetic nanoparticles could successfully be used to kill tumor cells.

First, they created nanoparticles made up of tiny, metallic magnets bound to particles of doxorubicin. Next, they implanted a magnet just under the skin covering the spinal vertebrae in the rat models. Then they injected the magnetic nanoparticles into the space around the spinal cord where the tumor was located.

The magnet implanted in close proximity to the tumor guided the nanoparticles to the tumor sites. The researchers were able to show that tumor cells took up the nanoparticles and underwent apoptosis - in other words, they were effectively destroyed. The impact of the nanoparticles on nearby healthy cells was very minimal, Mehta said.

"This proof-of-concept study shows that magnetic nanoparticles are an effective way to deliver chemotherapy to an area of the body that has been difficult to reach with available treatments," he said. "We will continue to investigate the potential of this therapy and hope to enter human trials if it continues to show promise."
-end-
Pouyan Kheirkhan, Steven Denyer, Abhiraj Bhimani, Gregory Arnone, Darian Esfahani, Tania Aguilar, Jack Zakrzewski, Indu Venugopal, Nazia Habib, Andreas Linninger, and Dr. Fady Charbel of UIC, and Gary Gallia of Johns Hopkins University School of Medicine, are co-authors on the paper.

This research was supported in part by a Young Investigator Research Grant (G3895) from the AO Foundation, North America. Steven Denyer, a third-year medical student, was lead author on the study and receives research support from the Hispanic Center of Excellence at UIC.

University of Illinois at Chicago

Related Chemotherapy Articles from Brightsurf:

Chemotherapy is used to treat less than 25% of people with localized sarcoma
UCLA researchers have found that chemotherapy is not commonly used when treating adults with localized sarcoma, a rare type of cancer of the soft tissues or bone.

Starved cancer cells became more sensitive to chemotherapy
By preventing sugar uptake, researchers succeeded in increasing the cancer cells' sensitivity to chemotherapeutic treatment.

Vitamin D could help mitigate chemotherapy side effects
New findings by University of South Australia researchers reveal that Vitamin D could potentially mitigate chemotherapy-induced gastrointestinal mucositis and provide relief to cancer patients.

Less chemotherapy may have more benefit in rectal cancer
GI Cancers Symposium: Colorado study of 48 patients with locally advanced rectal cancer receiving neoadjuvant chemotherapy, found that patients receiving lower-than-recommended doses in fact saw their tumors shrink more than patients receiving the full dose.

Male fertility after chemotherapy: New questions raised
Professor Delb├Ęs, who specializes in reproductive toxicology, conducted a pilot study in collaboration with oncologists and fertility specialists from the McGill University Health Centre (MUHC) on a cohort of 13 patients, all survivors of pediatric leukemia and lymphoma.

'Combo' nanoplatforms for chemotherapy
In a paper to be published in the forthcoming issue in NANO, researchers from Harbin Institute of Technology, China have systematically discussed the recent progresses, current challenges and future perspectives of smart graphene-based nanoplatforms for synergistic tumor therapy and bio-imaging.

Nanotechnology improves chemotherapy delivery
Michigan State University scientists have invented a new way to monitor chemotherapy concentrations, which is more effective in keeping patients' treatments within the crucial therapeutic window.

Novel anti-cancer nanomedicine for efficient chemotherapy
Researchers have developed a new anti-cancer nanomedicine for targeted cancer chemotherapy.

Ending needless chemotherapy for breast cancer
A diagnostic test developed at The University of Queensland might soon determine if a breast cancer patient requires chemotherapy or would receive no benefit from this gruelling treatment.

A homing beacon for chemotherapy drugs
Killing tumor cells while sparing their normal counterparts is a central challenge of cancer chemotherapy.

Read More: Chemotherapy News and Chemotherapy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.