Spin, spin, spin: researchers enhance electron spin longevity

July 30, 2020

The electron is an elementary particle, a building block on which other systems evolve. With specific properties such as spin, or angular momentum, that can be manipulated to carry information, electrons are primed to advance modern information technology. An international collaboration of researchers has now developed a way to extend and stabilize the lifetime of the electron's spin to more effectively carry information.

They published their results on June 15 in Physical Review B.

"We found the new way to use spin degree of freedom as electron spin wave," said Makoto Kohda, paper author and associate professor in the Department of Materials Science at Tohoku University.

The spin property serves as a tiny magnet, which allows it to store information. Spin can also hold quantum mechanical information, a critical tool for quantum computing. Electron spin as a nature of wave function, however, is new, according to Kohda. This is different from the magnetic spin wave, which carries information in a different way.

The electron spin wave, a term coined by Kohda and the research team, carries information, as well. The problem is that the spin wave could only propagate for so long before losing its information.

"We theoretically found a way to enhance the electron spin wave's lifetime by choosing the proper crystal orientations," Kohda said.

In a simulated experiment, the electron spin is confined in a quantum well with various crystal orientations. When the researchers adjusted the orientation of the crystal to allow the spin orientation to sit perpendicularly, the crystal structure partially protected the electron spin wave from relaxing too much. The protection allowed the spin to persist for up to 30% longer than normal.

"We will use this new information carrier, the electron spin wave, for future electronic devices and quantum information advancements," Kohda said. "The next step is to demonstrate how information can be transferred, processed and stored based on the electron spin wave in semiconductor devices."
-end-
This work was supported by the Japan Society for the Promotion of Science, the Marsden Fund Council of New Zealand, the Royal Society Te Apārangi and Tohoku University.

Tohoku University

Related Quantum Articles from Brightsurf:

Theoreticians show which quantum systems are suitable for quantum simulations
A joint research group led by Prof. Jens Eisert of Freie Universit├Ąt Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

Quantum shake
There they were, in all their weird quantum glory: ultracold lithium atoms in the optical trap operated by UC Santa Barbara undergraduate student Alec Cao and his colleagues in David Weld's atomic physics group.

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Quantum simulation of quantum crystals
International research team describes the new possibilities offered by the use of ultracold dipolar atoms

Quantum machines learn "quantum data"
Skoltech scientists have shown that quantum-enhanced machine learning can be used on quantum (as opposed to classical) data, overcoming a significant slowdown common to these applications and opening a ''fertile ground to develop computational insights into quantum systems''.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

Quantum classifiers with tailored quantum kernel?
Quantum information scientists have introduced a new method for machine learning classifications in quantum computing.

A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

Read More: Quantum News and Quantum Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.