Coastal cities leave up to 75% of seafloor exposed to harmful light pollution

July 30, 2020

The global expansion of coastal cities could leave more than three quarters of their neighbouring seafloor exposed to potentially harmful levels of light pollution.

A study led by the University of Plymouth (UK) showed that under both cloudy and clear skies, quantities of light used in everyday street lighting permeated all areas of the water column.

This could pose a significant threat to coastal species, with recent research showing the presence of artificial skyglow can disrupt the lunar compass species use when covering long distances.

However, the current study found that the colour of the wavelengths shone at the surface had a marked difference on how much biologically important light pollution reached the seafloor.

Many of the white LEDs now being used to illuminate the world's towns and cities use a mixture of green, blue and red wavelengths to generate their brightness.

Green and blue wavelengths left up to 76% and 70% of the three-dimensional seafloor area exposed to light pollution respectively, while the presence of red light was less than 1%.

The research - which also involved Bangor University, the University of Strathclyde and Plymouth Marine Laboratory - is published in Scientific Reports, an online journal from the publishers of Nature.

It is the first study in the world to quantify the extent to which biologically important artificial light is prevalent on the seafloor and could, in turn, be having a detrimental effect on marine species.

Dr Thomas Davies, Lecturer in Marine Conservation at the University of Plymouth and the paper's lead author, said: "The areas exposed here are not trivial. Our results focused on a busy marine area and demonstrate the light from coastal urban centres is widespread across the sea surface, sub surface and seafloor of adjacent marine habitats. But Plymouth is still just one coastal city with a population of 240,000 people.

"Seventy-five per cent of the world's megacities are now located in coastal regions and coastal populations are projected to more than double by 2060. So unless we take action now it is clear that biologically important light pollution on the seafloor is likely to be globally widespread, increasing in intensity and extent, and putting marine habitats at risk."

The study focussed on Plymouth Sound and the Tamar Estuary which together form a busy waterway and are home to the largest naval port in Western Europe.

It was conducted over four nights in 2018, when there was little or no moonlight, and blue, green, and red artificial light was shone at the sea surface during both clear and cloudy conditions, and at low and high tide.

A combination of mapping and radiative transfer modelling tools were then used to measure exposure at the surface, beneath the surface, and at the seafloor.

The researchers are now calling for a more comprehensive review of the full impacts of coastal light pollution, to try and mitigate against the most harmful effects as coastal cities grow globally.

Dr Tim Smyth, Head of Science of Marine Biogeochemistry and Ocean Observations at Plymouth Marine Laboratory, said: "Light pollution from coastal cities is likely having deleterious impacts on seafloor ecosystems which provide vital ecosystem services. We investigated this by visiting the Tamar, Plym and Plymouth Sound for four successive nights in September 2018. The time-lapse video of our trips really highlights how bright our shorelines are at night. During the fieldwork we measured the above water light field and in-water optics as well as running in-water light modelling simulations, in order for us to map the light field across the whole of the Tamar Estuary network."

University of Plymouth

Related Seafloor Articles from Brightsurf:

Microbial diversity below seafloor is as rich as on Earth's surface
For the first time, researchers have mapped the biological diversity of marine sediment, one of Earth's largest global biomes.

Deep-seabed mining lastingly disrupts the seafloor food web
Deep-seabed mining is considered a way to address the increasing need of rare metals.

How the seafloor of the Antarctic Ocean is changing - and the climate is following suit
Experts have reconstructed the depth of the Southern Ocean at key phases in the last 34 million years of the Antarctic's climate history

Coastal cities leave up to 75% of seafloor exposed to harmful light pollution
New research is the first in the world to quantify the extent to which biologically important artificial light is prevalent on the seafloor and could, in turn, be having a detrimental effect on marine species.

Marine microorganisms: How to survive below the seafloor
Foraminifera, an ancient and ecologically highly successful group of marine organisms, are found on and below the seafloor.

Four new species of giant single-celled organisms discovered on Pacific seafloor
Two new genera and four new species of giant, single-celled xenophyophores (protozoans belonging to a group called the foraminifera) were discovered in the deep Pacific Ocean during a joint project between scientists at the National Oceanography Centre, UK; the University of Hawai'i and the University of Geneva.

Delicate seafloor ridges reveal the rapid retreat of past Antarctic ice
Detailed seafloor mapping of submerged glacial landforms finds that Antarctic ice sheets in the past retreated far faster than the most rapid pace of retreat observed today, exceeding even the most extreme modern rates by at least an order of magnitude, according to a new study.

Window to another world: Life is bubbling up to seafloor with petroleum from deep below
Microbial life is bubbling up to the ocean floor along with fluids from deeply buried petroleum reservoirs, reports a team of scientists from the University of Calgary and the Marine Biological Laboratory, Woods Hole.

Scientists find highest ever level of microplastics on seafloor
An international research project has revealed the highest levels of microplastic ever recorded on the seafloor, with up to 1.9 million pieces in a thin layer covering just 1 square meter.

Seafloor currents may direct microplastics to biodiversity hotspots of the deep
Microplastic particles entering the sea surface were thought to settle to the seafloor directly below them, but now, a new study reveals that slow-moving currents near the bottom of the ocean direct the flow of plastics, creating microplastic hotpots in sediments of the deep sea.

Read More: Seafloor News and Seafloor Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to