Nav: Home

Copper-catalyzed enantioselective trifluoromethylation of benzylic radicals developed

July 30, 2020

Scientists from the Shanghai Institute of Organic Chemistry of the Chinese Academy of Sciences (CAS) have developed the first copper-catalyzed enantioselective trifluoromethylation of benzylic radicals via a copper-catalyzed radical relay strategy.

The incorporation of trifluoromethyl (CF3) groups into biologically active molecules has a significant effect on their physical and biological properties, and optically pure CF3-containing organic molecules broadly exist in pharmaceuticals and agrochemicals. Thus, exploration of efficient asymmetric trifluoromethylation methods is highly demand. Recently, radical trifluoromethylation coupling presents one of most efficient method for their synthesis. However, so far, there are no reports of asymmetric radical trifluoromethylations to date.

As their ongoing research interest in asymmetric radical transformations, LIU Guosheng and his colleagues have recently developed a copper-catalyzed radical relay strategy for the enantioselective cyanation and arylation of sp3 C-H bonds, including benzylic and allylic C-H bonds, which provide efficient method for later-stage modification of drugs and bioactive molecules. They devoted large efforts to mechanism studies, and found that the benzylic radical was enantioselectively trapped by (Box)Cu(CN)2 or (Box)Cu-Ar species.

Inspired by the recent progress on the radical trifluoromethylation, they envisioned that the asymmetric trifluoromethylation of secondary alkyl radicals forging chiral C-CF3 bonds might be possible by introducing chiral ligands.

The copper-catalyzed asymmetric trifluoromethylation of cyclopropanols successfully afforded the optically pure β-CF3 ketones in good yields and excellent enantioselectivities under very mild conditions. Critical to the success of this reaction is that a benzylic radical intermediate can be enantioselectively trapped by reactive (L*)CuIICF3.

n addition, a novel quinolinyl-containing bisoxazoline ligand (Bn-BoxQu) plays a significant role in the asymmetric trifluoromethylation.

This study enables to synthesize diverse optically pure β-CF3 ketones efficiently, which can serve as versatile building blocks for the synthesis of a (R)-CF3-modified analogue of drug Cinacalcet.
-end-
The research result was published in the journal Chem.

Chinese Academy of Sciences Headquarters

Related Organic Chemistry Articles:

Printing organic transistors
Researchers successfully print and demonstrate organic transistors, electronic switches, which can operate close to their theoretical speed limits.
Energy harvesting goes organic, gets more flexible
The race is on to create natural biocompatible piezoelectric materials for energy harvesting, electronic sensing, and stimulating nerves.
Researchers solve a long-standing problem in organic chemistry
Chemists have for a long time been interested in efficiently constructing polyenes - not least in order to be able to use them for future biomedical applications.
Organic heterostructures composed of one- and two-dimensional polymorph
A recent study facilely synthesized the OHSs composed of these two polymorph phases, whose growth mechanism is attributed to the low lattice mismatch rate of 5.8% between (001) plane of α phase (trunk) and (010) crystal plane of β phase (branch), Significantly, the multiport in/output channels can be achieved in the OHSs, which demonstrates the structure-dependent optical signals with the different output channels in the OHSs.
Green chemistry of fullerene: Scientists invented an environmentally friendly way to realize organic
Scientists from the Skoltech Center for Energy Science and Technology (CEST) and the Institute for Problems of Chemical Physics of Russian Academy of Sciences have developed a novel approach for preparing thin semiconductor fullerene films.
Let there be light: Synthesizing organic compounds
The appeal of developing improved drugs to promote helpful reactions or prevent harmful ones has driven organic chemists to better understand how to synthetically create these molecules and reactions in the laboratory.
Metal-organic framework nanoribbons
The nanostructure of metal-organic frameworks (MOFs) plays an important role in various applications since different nanostructures usually exhibit different properties and functions.
Next step in producing magnetic organic molecules
A team from the Ruhr Explores Solvation Cluster of Excellence at Ruhr-Universität Bochum has created new molecules with magnetic properties.
Verifying 'organic' foods
Organic foods are increasingly popular -- and pricey. Organic fruits and vegetables are grown without synthetic pesticides, and because of that, they are often perceived to be more healthful than those grown with these substances.
Water creates traps in organic electronics
Poor-quality organic semiconductors can become high-quality semiconductors when manufactured in the correct way.
More Organic Chemistry News and Organic Chemistry Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.