Challenging a central dogma of chemistry

July 30, 2020

Steve Granick, Director of the IBS Center for Soft and Living Matter and Dr. Huan Wang, Senior Research Fellow, report together with 5 interdisciplinary colleagues in the July 31 issue of the journal Science that common chemical reactions accelerate Brownian diffusion by sending long-range ripples into the surrounding solvent.

The findings violate a central dogma of chemistry, that molecular diffusion and chemical reaction are unrelated. To observe that molecules are energized by chemical reaction is "new and unknown," said Granick. "When one substance transforms to another by breaking and forming bonds, this actually makes the molecules move more rapidly. It's as if the chemical reactions stir themselves naturally."

"Currently, Nature does an excellent job of producing molecular machines but in the natural world scientists have not understood well enough how to design this property," said Wang. "Beyond curiosity to understand the world, we hope that practically this can become useful in guiding thinking about transducing chemical energy for molecular motion in liquids, for nanorobotics, precision medicine and greener material synthesis."

The unexpected ripples generated by chemical reactions, especially when catalyzed (accelerated by substances not themselves consumed), propagate long-range. For chemists and physicists, this work challenges the textbook view that molecular motion and chemical reaction are decoupled, and that reactions affect only the nearby vicinity. For engineers, this work shows a powerful new approach to design nanomotors at the truly molecular level.

Screening 15 organic chemical reactions, the researchers study chemical reactions that are workhorses with wide application within the organic chemical, pharmaceutical and materials industries. For example, "click" reactions assist the assembly of libraries of biomedical compounds for screening and the "Grubbs" reaction used for plastic manufacture. Their economic impact is major. Estimates indicate that a majority of all products manufactured require catalysis somewhere in their production sequence.

Wang remarked with enthusiasm: "Now, we're like a baby taking her first steps and there's so much exciting opportunity to grow this baby."

In designing their study, the researchers were bio-inspired by noticing that motion can be powered by enzymes and other molecular motors that are prevalent in living systems. Pioneering earlier work by Dr. Ah-Young Jee in the same research center showed this. But there was no consensus among scientists if these reports could be correctly extended outside biology. Analyzing the problem, the researchers made a high-risk, high-payoff argument. They hypothesized that the phenomenon would form an approach to understand molecular machines in the real world.

Testing their hypothesis, the team developed new analytical techniques. Professor Tsvi Tlusty, a theorist, predicted that catalysts in reaction gradients should migrate "uphill" in the direction of lesser diffusivity. Professor Yoon-Kyoung Cho, a microfluidics expert, designed a tailor-made microfluidics chip to test this idea. Dr. Ruoyu Dong, a Research Fellow, performed numerical computer simulations. "Our interdisciplinary team responded incredibly quickly to the research opportunities thanks to the research freedom of the Korean Institute for Basic Science," said Granick.

The team presents guidelines showing that the magnitude of diffusion increase in different systems depends on the energy release rate. These guidelines can be useful practically to estimate the effect in as-yet untested reactions. Beyond this, the study is very useful for expanding understanding of active materials, a collective term that traditionally refers to things like cells and microorganisms.

Granick concluded: "The field of active materials, quite new and growing fast, is enriched by this discovery that chemical reactions behave as nanoswimmers made of individual molecules that stir up the reaction soup. The concept of active materials has shown its value in challenging a central dogma of chemistry."

These findings were published in the July 31, 2020 issue of Science magazine. The study was performed at the IBS Center for Soft and Living Matter by authors Huan Wang, Myeonggon Park, Ruoyu Dong, Junyoung Kim, Yoon-Kyoung Cho, Tsvi Tlusty, and Steve Granick.

Institute for Basic Science

Related Chemical Reactions Articles from Brightsurf:

Shedding light on how urban grime affects chemical reactions in cities
Many city surfaces are coated with a layer of soot, pollutants, metals, organic compounds and other molecules known as ''urban grime.'' Chemical reactions that occur in this complex milieu can affect air and water quality.

Seeing chemical reactions with music
Audible sound enables chemical coloring and the coexistence of different chemical reactions in a solution.

Nanocatalysts that remotely control chemical reactions inside living cells
POSTECH professor In Su Lee's research team develops a magnetic field-induced heating 'hollow nanoreactors'.

New NMR method enables monitoring of chemical reactions in metal containers
Scientists have developed a new method of observing chemical reactions in metal containers.

Levitating droplets allow scientists to perform 'touchless' chemical reactions
Levitation has long been a staple of magic tricks and movies.

Predicting unpredictable reactions
New research from the University of Pittsburgh's Swanson School of Engineering, in collaboration with the Laboratory of Catalysis and Catalytic Processes (Department of Energy) at Politecnico di Milano in Milan, Italy, advances the field of computational catalysis by paving the way for the simulation of realistic catalysts under reaction conditions.

First-time direct proof of chemical reactions in particulates
Researchers at the Paul Scherrer Institute PSI have developed a new method to analyse particulate matter more precisely than ever before.

Finding the source of chemical reactions
In a collaborative project with MIT and other universities, scientists at Argonne National Laboratory have experimentally detected the fleeting transition state that occurs at the origin of a chemical reaction.

Accelerating chemical reactions without direct contact with a catalyst
Northwestern University researchers demonstrate a chemical reaction produced through an intermediary created by a separate chemical reaction, findings that could impact environmental remediation and fuel production.

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.

Read More: Chemical Reactions News and Chemical Reactions Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to