Argonne-led team finds special engines and fuels could cut air emissions and water use

July 30, 2020

Advanced fuels and new engine designs could reduce emissions and water use over the next 30 years, according for a new study led by Argonne scientists.

Advanced fuel blends, along with new engine designs, could reduce greenhouse gases, air pollutants and water use over the next three decades, according to a study led by researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory.

The paper, published last month in the journal Energy & Environmental Science, examined the potential impact of diversifying the U.S. fuel mix to include increased proportions of biofuels and engines designed to use these fuel blends. Doing so, the authors write, could make engines 10 percent more efficient compared to those running on conventional fuel.

"It is very exciting that biomass holds the potential to produce blendstocks that can boost fuel economy," said the study's lead author, Jennifer Dunn, who is a chemical engineer at Argonne. "This reduces fossil fuel greenhouse gas emissions by two routes: less fuel consumption overall and an increased share of fuel that has a lower carbon footprint than conventional gasoline because it is made from renewable biomass."

The research is supported by the Co-Optimization of Fuels & Engines (Co-Optima) initiative, which is jointly led by DOE's Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office and its Vehicle Technologies Office. As part of Co-Optima, researchers are exploring fuels and engines as dynamic design variables that can work together to boost efficiency and performance in both light-duty vehicles and trucks.

The current study used computer models to analyze the economic and environmental impacts of broadly adopting three different bio-blendstocks, or biomass-derived fuels that can be blended with conventional ones: ethanol, isopropanol, and furan. The team included researchers from Argonne, DOE's National Renewable Energy Laboratory, and Lexidyne, a data analysis firm based in Colorado.

The results showed that from 2025 to 2050, cumulative greenhouse gas emissions would be 4 to 7 percent lower for the light-duty transportation sector compared to a business-as-usual case. Beginning in 2050, emission reductions could reach the range of 7 to 9 percent. Water consumption declined by 3 to 4 percent and levels of the small, hazardous particulate matter known as PM2.5 dropped 3 percent in the 2025 to 2050 period.

"This analysis showed us vehicles with engines co-designed with these fuels that enhance fuel economy can be attractive to drivers and make their way onto our roads," Dunn said, given that they will lead not only to lower levels of greenhouse gases, air pollutants and water use, but also to lower spending at the gas pump. 

Evolving the U.S. fleet to include more advanced engine designs co-optimized to take advantage of bio-blendstocks could support anywhere from 278,000 to 1.7 million more jobs annually, the analysis found, depending on the speed and scope of the scale-up. This transformation will take time, Dunn said, "So we have to stay the course with development of these technologies and their introduction into the vehicle choices consumers have."
Learn more about the Co-Optima initiative and Co-Optima consortium partners.

The Office of Energy Efficiency and Renewable Energy supports early-stage research and development of energy efficiency and renewable energy technologies to strengthen U.S. economic growth, energy security, and environmental quality.

EERE's Vehicle Technologies Office (VTO) supports research and development (R&D) of efficient and sustainable transportation technologies that will improve energy efficiency and affordability. These technologies, which include advanced batteries and electrification, lightweight materials, advanced combustion systems and fuels, as well as energy efficient mobility systems, will increase America's energy security, economic vitality, and quality of life.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit

DOE/Argonne National Laboratory

Related Renewable Energy Articles from Brightsurf:

Creating higher energy density lithium-ion batteries for renewable energy applications
Lithium-ion batteries that function as high-performance power sources for renewable applications, such as electric vehicles and consumer electronics, require electrodes that deliver high energy density without compromising cell lifetimes.

Renewable energy targets can undermine sustainable intentions
Renewable energy targets (RETs) may be too blunt a tool for ensuring a sustainable future, according to University of Queensland-led research.

Intelligent software for district renewable energy management
CSEM has developed Maestro, an intelligent software application that can manage and schedule the production and use of renewable energies for an entire neighborhood.

Renewable energy transition makes dollars and sense
New UNSW research has disproved the claim that the transition to renewable electricity systems will harm the global economy.

Renewable energy advance
In order to identify materials that can improve storage technologies for fuel cells and batteries, you need to be able to visualize the actual three-dimensional structure of a particular material up close and in context.

Illuminating the future of renewable energy
A new chemical compound created by researchers at West Virginia University is lighting the way for renewable energy.

Using fiber optics to advance safe and renewable energy
Fiber optic cables, it turns out, can be incredibly useful scientific sensors.

Renewable energy developments threaten biodiverse areas
More than 2000 renewable energy facilities are built in areas of environmental significance and threaten the natural habitats of plant and animal species across the globe.

Could water solve the renewable energy storage challenge?
Seasonally pumped hydropower storage could provide an affordable way to store renewable energy over the long-term, filling a much needed gap to support the transition to renewable energy, according to a new study from IIASA scientists.

Scientists take strides towards entirely renewable energy
Researchers have made a major discovery that will make it immeasurably easier for people (or super-computers) to search for an elusive 'green bullet' catalyst that could ultimately provide entirely renewable energy.

Read More: Renewable Energy News and Renewable Energy Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to