Researchers identify protein modules that 'read' distinct gene 'silencing codes'

July 31, 2003

Since the time when humans first learned to record their thoughts in written form, codes have kept sensitive information from prying eyes. But conveying information through a code requires someone who can read it as well as write it. The same is true for one of nature's methods for transmitting information that activates or silences a gene: the "histone code."

First formally proposed in 2000 by C. David Allis, Ph.D., and his postdoctoral fellow Brian Strahl, Ph.D., the histone code is a pattern of chemical flags that decorates the "tails" of spool-like proteins called histones. Double-helical DNA, spanning some seven feet in length, wraps around histones to condense and compact itself in the nucleus of all body cells. Together, histones and DNA form a largely protective and highly constrained structure called chromatin.

In the August 1 issue of Genes & Development, Allis, along with Rockefeller University colleagues Wolfgang Fischle, Ph.D., and Yanming Wang, Ph.D., and a team of researchers at University of Virginia led by Sepideh Khorasanizadeh, Ph.D., report that protein modules called chromodomains "read" the histone code responsible for silencing, or switching off, genes.

The discovery of histone code "readers" is a crucial next step in unlocking its secrets.

"Understanding chemical modifications to histones is becoming increasingly important for understanding such diseases as cancer," says Allis, Joy and Jack Fishman Professor and head of the Laboratory of Chromatin Biology at Rockefeller. "Ultimately, determining which proteins read the histone code will enable us to develop improved treatments for cancer in humans."

In addition, many scientists, including Allis, believe these chemical modifications are responsible for passing on inherited traits without changing the sequence of DNA, an emerging field called epigenetics.

The scientists demonstrate that chromodomains guide certain proteins to specific locations on the histone tail. And what's more, they provide evidence that chromodomains, a form of molecular Velcro, read the histone code by distinguishing between two similar locations on the histone tail, a flexible protein chain that pokes through the tightly folded chromatin complex. Each chromodomain therefore docks to a specific location, but not another.

The research reported in the Genes & Development paper focuses on a chemical reaction called methylation that occurs on histone H3 (histones are made of four subunits called H2A, H2B, H3 and H4). During methylation, an enzyme called HMT (histone methyltransferase) attaches a methyl chemical group to lysine, one of the 20 amino acid building blocks of proteins. Lysine, in fact, is methylated at two similar, but not identical, positions in the tail of histone H3: at position 9 (Lys9) and position 27 (Lys27).

"Histone methyltransferases are one of the enzyme classes in the cell nucleus that 'writes' the histone code," says Allis.

In 2001, Allis' laboratory at the University of Virginia (he joined Rockefeller in March 2003) showed that a protein called HP1 docks to methylated Lys9. HP1 is a protein associated with heterochromatin, a condensed form of chromatin that silences genes.

Importantly, Allis's team showed that HP1's chromodomain was the molecular Velcro that attached to methylated Lys9. A year later Khorasanizadeh and co-workers at University of Virginia used X-ray crystallography to visualize how the HP1 chromodomain recognizes the methylation mark on Lys9.

In the Genes & Development paper, Allis and Khorasanizadeh describe how another silencing protein, called Polycomb, binds to methylated Lys27. Both the HP1 and Polycomb chromodomains, although very similar in structure and composition, differ by a few amino acids. This difference ensures that HP1 only docks to a methylated Lys9, and Polycomb only docks to methylated Lys27.

"The structure tells us that the two chromodomains literally use the amino acids that are different between them," says Allis. "Each chromodmain contains a tiny groove that extends further than the sequence that's immediately identical, and that's where the molecular discrimination occurs."

In a crucial experiment, Allis and colleagues swapped the chromodomain on HP1 with the chromodomain on Polycomb. When the altered proteins were added to insect cells, they switched their chromosomal targets: HP1 docked with methylated Lys27 where Polycomb normally resides, and Polycomb docked with methylated Lys9 where HP1 normally resides.

"This shows conclusively that chromodomains act as guides to take these proteins to specific methyl marks on the histone tails," says Allis.

Both HP1 and Polycomb play important roles in silencing certain genes crucial for proper development of embryos in a range of species from fruit flies to humans. Loss of HP1 correlates with metastasis in human breast cancer cells, and mutations in Polycomb proteins have been linked to cancers of the prostate and the immune system.

"Methylated Lys9 and Lys27 are two of the hottest histone modification targets in cancer research," says Allis. "Now that we know how HP1 and Polycomb bind to their respective methyl marks, the next step is try to better understand how these effectors are released at the time during the cell cycle or during development when they are no longer needed to silence genes".
-end-
This research was supported in pat by grants from the National Institute of General Medical Sciences, part of the federal government's National Institutes of Health. Fischle is a Robert Black fellow of the Damon Runyon Cancer Research Foundation.

Rockefeller University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.