Gold nanoparticles may pan out as tool for cancer diagnosis

July 31, 2007

WEST LAFAYETTE, Ind. - When it comes to searching out cancer cells, gold may turn out to be a precious metal.

Purdue University researchers have created gold nanoparticles that are capable of identifying marker proteins on breast cancer cells, making the tiny particles a potential tool to better diagnose and treat cancer. The technology would be about three times cheaper than the most common current method and has the potential to provide many times the quantity and quality of data, said Joseph Irudayaraj, an associate professor of agricultural and biological engineering.

"We hope that this technology will soon play a critical role in early detection and monitoring of breast cancer," said Irudayaraj (pronounced ee-roo-THY'-a-razh), leader of a research team that developed a new method for fabricating the nanoparticles that is published online this month in the journal Analytical Chemistry. "Our goal is to see it in commercial use in about four years."

The gold nanoparticles, or nanorods, are tiny rod-shaped gold particles, even smaller than viruses, which are equipped with antibodies designed to bind to a specific marker on cell surfaces. Researchers analyze these surface markers, proteins on a cell's exterior, because they can contain valuable information about what type of cell they belong to or what state that cell may be in.

"In cancer diagnosis, the ability to accurately detect certain key markers will be very helpful because certain types of cancers have specific surface markers," Irudayaraj said.

In another study published last month in Nano Letters, Irudayaraj showed that the nanorods, when combined with a special imaging technique, were capable of recognizing cancer stem cells by binding to known markers on their exterior. Cancer stem cells are important to detect because they are particularly invasive and more likely than other types of cancer cells to spread, or metastasize, to other organs. These and other types of cells the technology utilizes are obtained from blood tests as opposed to biopsies.

The nanoparticles, or "gold nanorod molecular probes," are fabricated so that their size is unique to their target marker. That way, when nanorods bind to their marker, they "scatter," or disrupt light in a characteristic manner that researchers can then pair to the nanorod's dimensions, its antibody and the target cancer marker, which must be present for binding to occur.

More than 200,000 women are diagnosed with breast cancer every year in the United States, and 80 percent of those women receive some type of therapy, Irudayaraj said. Since 40 percent of them will have a relapse, regular monitoring, which this technology aims to do, is vital.

Irudayaraj said using gold nanorods for cancer detection will be about one-third the cost of the current analogous technology, called flow cytometry. This method works by attaching fluorescent probes to cancer cells, whereas the nanorod technology has its basis in sensing plasmons, or sub-atomic particles present in the gold nanoparticles.

The nanorods also require only a few cells, whereas flow cytometry requires hundreds to thousands of cells. This could be advantageous when dealing with scarce sample sizes, Irudayaraj said.

Irudayaraj and his team - postdoctoral researcher Chenxu Yu and Harikrishna Nakshatri, a researcher at the Indiana University School of Medicine - demonstrated that the nanorods bind to three different markers. Two of the markers were used to calculate the invasiveness of the cancer cell, while one marker - present equally among the different cancer types - was used to calculate the degree to which the other markers were expressed, or present. Irudayaraj said his gold nanorods may be able to detect as many as 15 different markers in the future, possibly opening the door for even more comprehensive tests.

Ultimately, Irudayaraj imagines a new kind of routine and cost-effective procedure for the identification of cancer cells. A patient gives blood, from which cancer cells are obtained. Nanorods are then added to bind to specific markers, if present. Next, the cells are placed on a microscopic slide for imaging. After the rods absorb and re-emit radiation, a special camera records the scattered light, which a computer helps to analyze. Finally, based upon the data, a diagnosis is made.
-end-
Irudayaraj received funding from Purdue and the Indiana University School of Medicine, and the work was conducted at the Bindley Bioscience Center, of which he is a member. He plans to further develop the technology in the future and is researching mechanical properties of the nanorods and the surface markers to which they bind. He hopes to create nanoparticles that are capable of binding to more markers and to provide more information about these markers and what they reveal about the state of the cell.

Source: Joseph Irudayaraj, (765) 494-0388, josephi@purdue.edu

Abstract on the research in this release is available at: http://news.uns.purdue.edu/x/2007b/070730IrudayarajNano.html

Purdue University

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.