Quasars may answer how starburst galaxies were extinguished

July 31, 2017

Some of the biggest galaxies in the universe are full of extinguished stars. But nearly 12 billion years ago, soon after the universe first was created, these massive galaxies were hotspots that brewed up stars by the billions.

How these types of cosmic realms, called dusty starburst galaxies, became galactic dead zones is an enduring mystery.

Astronomers at the University of Iowa, in a new study published in the Astrophysical Journal, offer a clue. They say quasars, powerful energy sources believed to dwell at the heart of galaxies, may be responsible for why some dusty starburst galaxies ceased making stars.

The study could help explain how galaxies evolve from star makers to cosmic cemeteries and how various phenomena scientists know little about -- quasars and supermassive black holes that are believed to exist deep within all galaxies, for example -- may propel those changes.

The scientists arrived at their theory after locating quasars inside four dusty starburst galaxies that still are creating stars.

"These quasars may play an important role in making the dusty starbursts extinct in the cosmic history," says Hai Fu, assistant professor in the UI's Department of Physics and Astronomy and the paper's first author. "This is because quasars are energetic enough to eject gas out of the galaxy, and gas is the fuel for star formation, so quasars provide a viable mechanism to explain the transition between a starburst and an extinct elliptical (galaxy)."

Quasars shouldn't be detectable in dusty starburst galaxies because their light would be absorbed, or blocked, by the grit churned up by the intense star-forming activity taking place there, Fu says.

"So, the fact that we saw any such quasars implies that there must be more quasars hidden in dusty starbursts," Fu says. "To push this to the extreme, maybe every dusty starburst galaxy hosts a quasar and we just cannot see the quasars."

Fu and his team located the quasars in March 2016 with the Atacama Large Millimeter/submillimeter Array (ALMA), a bank of radio telescopes located more than 16,000 feet above sea level in northern Chile. It was the first time Fu's team reserved time on ALMA, brought into full operation in 2013 and funded by international partners, including the U.S. National Science Foundation.

The scientists then mapped the quasars with other telescopes and at wavelengths ranging from ultraviolet to far infrared. Based on these observations, they confirmed the quasars are the same as those located with ALMA. The question then became: Why are these quasars visible when they should be enshrouded?

The researchers have a theory. They think the quasars are peeking out from deep holes in each galaxy, a debris-less vacuum that allows light to escape amid the cloudy surroundings. The specific shape of these galaxies is unclear because even ALMA isn't powerful enough to provide a clear look at regions of the cosmos where light being detected was emitted 12 billion years ago, when the universe was roughly one-seventh its current age. But the team imagines the galaxies may be doughnut shaped and oriented in such a way that their holes (and, thus, the quasar) can be seen.

"It's a rare case of geometry lining up," says Jacob Isbell, a UI senior from Garrison, Iowa, majoring in physics and astronomy and the paper's second author. "And that hole happens to be aligned with our line of sight."

The scientists now think most quasars inside dusty starburst galaxies can't be seen because they're oriented in a way that keeps them hidden. But finding four examples of dusty starburst galaxies with viewable quasars does not seem random; in fact, it suggests more exist.

The paper is titled, "The circumgalactic medium of submillimeter galaxies. II. Unobscured QSOS within dusty starbursts and QSO sightlines with impact parameters below 100 kiloparsec."
-end-
Contributing authors include Caitlin Casey from the University of Texas at Austin; Asantha Cooray at the University of California, Irvine; J. Xavier Prochaska from the University of California, Santa Cruz; Nick Scoville from the California Institute of Technology; and Alan Stockton from the University of Hawaii.

The National Radio Astronomy Observatory, an NSF facility; NASA; and the University of Iowa funded the research.

University of Iowa

Related Quasars Articles from Brightsurf:

Australian research shows NASA's James Webb telescopes will reveal hidden galaxies
Simulations show it's possible to distinguish host galaxy from quasars, although still challenging due to the galaxy's small size on the sky.

Rare encounters between cosmic heavyweights
Astronomers using Maunakea Observatories - Subaru Telescope, W. M. Keck Observatory, and Gemini Observatory - have discovered three pairs of merging galaxies.

Cosmic quasars embrace 1970s fashion trend
Researchers have studied more than 300 quasars -- spinning black holes that produce beams of plasma.

Astrophysicists wear 3D glasses to watch quasars
A team of researchers has shown a way to determine the origins and nature of quasar light by its polarization.

Space dragons: Researchers observe energy consumption in quasars
Researchers, for the first time, have observed the accelerated rate at which eight quasars consume interstellar fuel to feed their black holes.

Astronomers reveal true colors of evolving galactic beasts
Astronomers have identified a rare moment in the life of some of the universe's most energetic objects.

Fast and furious: detection of powerful winds driven by a supermassive black hole
This is the first publication based entirely on data obtained with EMIR, an instrument developed in the Instituto de AstrofĂ­sica de Canarias (IAC) which analyses the infrared light gathered by the Gran Telescopio Canarias (GTC) from the Roque de los Muchachos Observatory (GarafĂ­a, La Palma).

Astronomers find quasars are not nailed to the sky
Until recently, quasars were thought to have essentially fixed positions in the sky.

Astronomers discover 83 supermassive black holes in the early universe
Astronomers from Japan, Taiwan and Princeton University have discovered 83 quasars powered by supermassive black holes that were formed when the universe was only 5 percent of its current age.

Seeing double could help resolve dispute about how fast the universe is expanding
How fast the universe is expanding has been puzzling astronomers for almost a century.

Read More: Quasars News and Quasars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.