Nav: Home

New research could make dew droplets so small, they're invisible

July 31, 2017

By better understanding the behavior of water in its smallest form, a Virginia Tech professor and his undergraduate student could be improving the efficiency of removing condensation in a major way.

Jonathan Boreyko, an assistant professor in the Department of Biomedical Engineering and Mechanics in the Virginia Tech College of Engineering, has been studying "jumping" dew droplets since he discovered the phenomenon in graduate school.

According to Boreyko, dew droplets only jump from water-repellent surfaces when they reach a large enough size -- about 10 micrometers -- but it was unclear why until Boreyko and his students made a breakthrough discovery, soon to be published in the high-impact journal ACS Nano.

In Boreyko's lab, then-undergraduate Megan Mulroe experimented with the surface of silicon chips to see how the nanoscopic topography of the surface might impact the jumping ability of condensation.

By creating and testing six different types of surfaces covered with so-called nanopillars -- reminiscent of stalagmites on a cave floor -- Mulroe found that the critical size of the jumping droplet can be fine-tuned based on the height, diameter, and pitch of the nanopillars.

"These results, correlated with a theoretical model, revealed that the bottleneck for jumping is how the droplets inflate inside of the surface after they first form," Boreyko said.

Essentially, when the nanopillars are tall and slender, the droplets formed inside and on the crevices can jump off the surface at a much smaller size, down to two micrometers. Likewise, short and stout pillars increase the size of the droplet required to jump -- up to 20 micrometers in the case of Mulroe's experiment.

While the jumping droplets phenomena has been found to be the most efficient form of condensation removal, the ability to tweak the size of the droplets can allow for improved efficiency in removing condensation from surfaces.

"We expect that these findings will allow for maximizing the efficiency of jumping-droplet condensers, which could make power plants more efficient and enable robust anti-fogging and self-cleaning surfaces," Boreyko said. "The ultimate goal is for all dew droplets forming on a surface to jump off before they are even visible to the eye."

Mulroe, who was first author on the paper, conducted all of the experiments, while graduate student Farzad Ahmadi, who is pursuing a Ph.D. in Engineering Mechanics, backed up the findings with a theoretical model.

The research will be published July 31 in ACS Nano.
-end-


Virginia Tech

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.