Rice University chemists make laser-induced graphene from wood

July 31, 2017

Rice University scientists have made wood into an electrical conductor by turning its surface into graphene.

Rice chemist James Tour and his colleagues used a laser to blacken a thin film pattern onto a block of pine. The pattern is laser-induced graphene (LIG), a form of the atom-thin carbon material discovered at Rice in 2014.

"It's a union of the archaic with the newest nanomaterial into a single composite structure," Tour said.

The discovery is detailed this month in Advanced Materials.

Previous iterations of LIG were made by heating the surface of a sheet of polyimide, an inexpensive plastic, with a laser. Rather than a flat sheet of hexagonal carbon atoms, LIG is a foam of graphene sheets with one edge attached to the underlying surface and chemically active edges exposed to the air.

Not just any polyimide would produce LIG, and some woods are preferred over others, Tour said. The research team led by Rice graduate students Ruquan Ye and Yieu Chyan tried birch and oak, but found that pine's cross-linked lignocellulose structure made it better for the production of high-quality graphene than woods with a lower lignin content. Lignin is the complex organic polymer that forms rigid cell walls in wood.

Ye said turning wood into graphene opens new avenues for the synthesis of LIG from nonpolyimide materials. "For some applications, such as three-dimensional graphene printing, polyimide may not be an ideal substrate," he said. "In addition, wood is abundant and renewable."

As with polyimide, the process takes place with a standard industrial laser at room temperature and pressure and in an inert argon or hydrogen atmosphere. Without oxygen, heat from the laser doesn't burn the pine but transforms the surface into wrinkled flakes of graphene foam bound to the wood surface. Changing the laser power also changed the chemical composition and thermal stability of the resulting LIG. At 70 percent power, the laser produced the highest quality of what they dubbed "P-LIG," where the P stands for "pine."

The lab took its discovery a step further by turning P-LIG into electrodes for splitting water into hydrogen and oxygen and supercapacitors for energy storage. For the former, they deposited layers of cobalt and phosphorus or nickel and iron onto P-LIG to make a pair of electrocatalysts with high surface areas that proved to be durable and effective.

Depositing polyaniline onto P-LIG turned it into an energy-storing supercapacitor that had usable performance metrics, Tour said.

"There are more applications to explore," Ye said. "For example, we could use P-LIG in the integration of solar energy for photosynthesis. We believe this discovery will inspire scientists to think about how we could engineer the natural resources that surround us into better-functioning materials."

Tour saw a more immediate environmental benefit from biodegradable electronics.

"Graphene is a thin sheet of a naturally occurring mineral, graphite, so we would be sending it back to the ground from which it came along with the wood platform instead of to a landfill full of electronics parts."
Co-authors of the paper are Rice graduate students Jibo Zhang and Yilun Li; Xiao Han, who has a complimentary appointment at Rice and is a graduate student at Beihang University, Beijing, China; and Rice research scientist Carter Kittrell. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

The Air Force Office of Scientific Research Multidisciplinary University Research Initiative and the NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment supported the research.

Read the abstract at http://onlinelibrary.wiley.com/doi/10.1002/adma.201702211/full

This news release can be found online at http://news.rice.edu/2017/07/31/need-graphene-grab-a-saw/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Rice U. chemists create 3-D printed graphene foam: http://news.rice.edu/2017/06/21/rice-u-chemists-create-3-d-printed-graphene-foam-2/

Zap! Graphene is bad news for bacteria: http://news.rice.edu/2017/05/22/zap-graphene-is-bad-news-for-bacteria-2/

Gas gives laser-induced graphene super properties: http://news.rice.edu/2017/05/15/gas-gives-laser-induced-graphene-super-properties/

Tour Group: http://www.jmtour.com

Wiess School of Natural Sciences: http://natsci.rice.edu

Video: https://youtu.be/Sueo5NhpklM

CAPTION: A video shows two planks of laser-induced graphene on pine fashioned into catalysts for electrolysis at Rice University. Bubbles from the electrode on the left are hydrogen, and on the right, oxygen. (Credit: Tour Group/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.