Nav: Home

One-nanometer trimetallic alloy particles created

July 31, 2017


The principal component of petroleum and natural gas are hydrocarbons and their mixtures, and are indispensable as resources supporting modern infrastructure as raw materials for the petrochemical industry. A technique which has been conventionally used to create beneficial chemical products from hydrocarbons was to use a large amount of metallic peroxides in hazardous organic solvents to oxidize hydrocarbon compounds. To use resources effectively and to reduce environmental impact, clean catalytic oxidization without solvents using the oxygen in the air has been a popular research subject in recent years. Research of noble metal nanoparticles supported on porous carbon materials or metallic oxides are especially prevalent, and they are viewed as promising catalysts. Vital elements determining the reactivity of such heterogeneous catalysts are the shape, size, and metallic composition of the metallic nanoparticles. Particles of a size less than 2 nm have especially gained attention in the development of new high-performance catalysts, since it has been found that reducing the diameter of the catalyst particle not only increases the surface area ratio but greatly changes the state of the electrons on the surface of the metals, greatly changing its reactivity. However, the method of synthesizing metallic nanoparticles of such a size while controlling both its diameter and composition had not been discovered.


The research group led by Kimihisa Yamamoto of Tokyo institute of Technology developed a method of synthesizing microscopic alloy nanoparticles using branched molecules "dendrimers" they themselves had developed in Yamamoto Atom Hybrid Project on the ERATO program, the Exploratory Research for Advanced Technology, research funding program supported by Japan Science and Technology Agency (JST). Molecules called dendrimers have a regular branching structure with only one definite molecular weight although they are classified as macromolecules. The research group implemented many coordination sites for forming metal ions and complexes. By using a dendrimer with such coordination sites as a template for the nanoparticle, the group was able to synthesize a nanoparticle with a controlled number of atoms.

Further, they evaluated the activity of this alloy nanoparticle as an oxidization catalyst for hydrocarbons under ordinary pressures when using oxygen in the air as the oxidizing agent, and found that its activity was 24 times greater than that of commercially available catalysts for oxidization of organic compounds. They also found that, by adding a catalytic amount of organic hydroperoxide, this catalyst promotes the oxidization of hydrocarbon into aldehydes and ketones under ordinary temperatures and pressures. Further, by comparing the changes in activity due to alloy catalysts of different metallic compositions and examining the composition and other characteristics of the intermediates, ketones and organic hydroperoxides, the group was able to observe the process of reaction promotion due to the alloying of the catalyst.

Future Development

The catalytic transformation of inactive hydrocarbons to substances with higher added value is a technology garnering much attention in recent times.?The knowledge gained from this research is anticipated to become a design guideline for new high-performance catalysts. The method for synthesizing alloy nanoparticles developed in this research can be used generally and applied to other metals. For this reason, this could be said to be the technology uncovering the reactivity of other microscopic alloy nanoparticles, whose catalytic performance had not been known. Further study is required on the increase of catalytic activity at the interface of copper and other noble metals in the oxidizing transformations of other organic compounds, not only the oxidization of hydrocarbons. Application is anticipated for next-generation high-performance materials in the fields as diverse as optics, electronics, and energy.

Tokyo Institute of Technology

Related Nanoparticle Articles:

Nanoparticle treatment could improve immunotherapy against cancer
In preliminary findings that will be presented Sunday, April 2, at the American Association for Cancer Research Annual Meeting 2017, UNC Lineberger researchers report on a preclinical study into the use of nanoparticles to improve the efficacy of immunotherapy drugs known as checkpoint inhibitors.
Nanoparticle paves the way for new triple negative breast cancer drug
A potential new drug to tackle the highly aggressive 'triple negative' breast cancer -- and a nanoparticle to deliver it directly into the cancer cells -- have been developed by UK researchers.
Most complex nanoparticle crystal ever made by design
The most complex crystal designed and built from nanoparticles has been reported by researchers at Northwestern University and the University of Michigan.
Supercomputing, experiment combine for first look at magnetism of real nanoparticle
A multi-institution team simulated, for the first time, atomic-level magnetic properties in regions of a real nanoparticle based on experimental data.
Nanoparticle exposure can awaken dormant viruses in the lungs
Nanoparticles from combustion engines can activate viruses that are dormant in in lung tissue cells.
More Nanoparticle News and Nanoparticle Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...