Nav: Home

Scientists watch 'artificial atoms' assemble into perfect lattices with many uses

July 31, 2017

Menlo Park, Calif. -- Some of the world's tiniest crystals are known as "artificial atoms" because they can organize themselves into structures that look like molecules, including "superlattices" that are potential building blocks for novel materials.

Now scientists from the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have made the first observation of these nanocrystals rapidly forming superlattices while they are themselves still growing. What they learn will help scientists fine-tune the assembly process and adapt it to make new types of materials for things like magnetic storage, solar cells, optoelectronics and catalysts that speed chemical reactions.

The key to making it work was the serendipitous discovery that superlattices can form superfast - in seconds rather than the usual hours or days - during the routine synthesis of nanocrystals. The scientists used a powerful beam of X-rays at SLAC's Stanford Synchrotron Radiation Lightsource (SSRL) to observe the growth of nanocrystals and the rapid formation of superlattices in real time.

A paper describing the research, which was done in collaboration with scientists at the DOE's Argonne National Laboratory, was published today in Nature.

"The idea is to see if we can get an independent understanding of how these superlattices grow so we can make them more uniform and control their properties," said Chris Tassone, a staff scientist at SSRL who led the study with Matteo Cargnello, assistant professor of chemical engineering at Stanford

Tiny Crystals with Outsized Properties

Scientists have been making nanocrystals in the lab since the 1980s. Because of their tiny size -they're billionths of a meter wide and contain just 100 to 10,000 atoms apiece -- they are governed by the laws of quantum mechanics, and this gives them interesting properties that can be changed by varying their size, shape and composition. For instance, spherical nanocrystals known as quantum dots, which are made of semiconducting materials, glow in colors that depend on their size; they are used in biological imaging and most recently in high-definition TV displays.

In the early 1990s, researchers started using nanocrystals to build superlattices, which have the ordered structure of regular crystals, but with small particles in place of individual atoms. These, too, are expected to have unusual properties that are more than the sum of their parts.

But until now, superlattices have been grown slowly at low temperatures, sometimes in a matter of days.

That changed in February 2016, when Stanford postdoctoral researcher Liheng Wu serendipitously discovered that the process can occur much faster than scientists had thought.

'Something Weird Is Happening'

He was trying to make nanocrystals of palladium - a silvery metal that's used to promote chemical reactions in catalytic converters and many industrial processes - by heating a solution containing palladium atoms to more than 230 degrees Celsius. The goal was to understand how these tiny particles form, so their size and other properties could be more easily adjusted.

The team added small windows to a reaction chamber about the size of a tangerine so they could shine an SSRL X-ray beam through it and watch what was happening in real time.

"It's kind of like cooking," Cargnello explained. "The reaction chamber is like a pan. We add a solvent, which is like the frying oil; the main ingredients for the nanocrystals, such as palladium; and condiments, which in this case are surfactant compounds that tune the reaction conditions so you can control the size and composition of the particles. Once you add everything to the pan, you heat it up and fry your stuff."

Wu and Stanford graduate student Joshua Willis expected to see the characteristic pattern made by X-rays scattering off the tiny particles.They saw a completely different pattern instead.

"So something weird is happening," they texted their advisor.

The something weird was that the palladium nanocrystals were assembling into superlattices.

A Balance of Forces

At this point, "The challenge was to understand what brings the particles together and attracts them to each other but not too strongly, so they have room to wiggle around and settle into an ordered position," said Jian Qin, an assistant professor of chemical engineering at Stanford who performed theoretical calculations to better understand the self-assembly process.

Once the nanocrystals form, what seems to be happening is that they acquire a sort of hairy coating of surfactant molecules. The nanocrystals glom together, attracted by weak forces between their cores, and then a finely tuned balance of attractive and repulsive forces between the dangling surfactant molecules holds them in just the right configuration for the superlattice to grow.

To the scientists' surprise, the individual nanocrystals then kept on growing, along with the superlattices, until all the chemical ingredients in the solution were used up, and this unexpected added growth made the material swell. The researchers said they think this occurs in a wide range of nanocrystal systems, but had never been seen because there was no way to observe it in real time before the team's experiments at SSRL.

"Once we understood this system, we realized this process may be more general than we initially thought," Wu said. "We have demonstrated that it's not only limited to metals, but it can also be extended to semiconducting materials and very likely to a much larger set of materials."

The team has been doing follow-up experiments to find out more about how the superlattices grow and how they can tweak the size, composition and properties of the finished product.
-end-
Ian Salmon McKay, a graduate student in chemical engineering at Stanford, and Benjamin T. Diroll, a postdoctoral researcher at Argonne National Laboratory's Center for Nanoscale Materials, also contributed to the work.

SSRL and CNM are DOE Office of Science User Facilities, and the research was funded by the DOE Office of Science and by a Laboratory Directed Research and Development grant from SLAC.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit http://www.slac.stanford.edu.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/SLAC National Accelerator Laboratory

Related Nanocrystals Articles:

Ultrafast stimulated emission microscopy of single nanocrystals in Science
ICFO researchers report on a new ultrafast stimulated emission microscopy technique that allows imaging of nano-objects and investigating their dynamics.
Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability
Researchers at the Georgia Institute of Technology have demonstrated a novel approach aimed at addressing the perovskite's durability problem: encasing the perovskite inside a double-layer protection system made from plastic and silica.
Balancing elementary steps for boosting alkaline hydrogen evolution
Recently, Professors Jin-Song Hu and Li-Jun Wan from Institute of Chemistry, Chinese Academy of Sciences and their collaborators designed the nanocrystals with tunable Ni/NiO heterosurfaces to target Volmer and Heyrovsky/Tafel steps in the alkaline hydrogen evolution reaction (HER) and discovered that such bicomponent active sites on the surface should be balanced for promoting HER performance.
Single-particle spectroscopy of CsPbBr3 perovskite reveals the origin low electrolumine
Researchers from Tokyo Institute of Technology (Tokyo Tech) used the method of single-particle spectroscopy to study electroluminescence in light-emitting devices.
University of Konstanz researchers create uniform-shape polymer nanocrystals
Researchers from the University of Konstanz's Collaborative Research Centre (CRC) 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' successfully generate uniform-shape nanocrystals using direct polymerization
Understanding the (ultra-small) structure of silicon nanocrystals
New research provides insight into the structure of silicon nanocrystals, a substance that promises to provide efficient lithium ion batteries that power your phone to medical imaging on the nanoscale.
Squeezed nanocrystals: A new model predicts their shape when blanketed under graphene
In a collaboration between the US Department of Energy's Ames Laboratory and Northeastern University, scientists have developed a model for predicting the shape of metal nanocrystals or 'islands' sandwiched between or below two-dimensional (2D) materials such as graphene.
Invention by NUS chemists opens the door to safer and less expensive X-ray imaging
Professor Liu Xiaogang from the National University of Singapore led a team to develop novel lead halide perovskite nanocrystals that are highly sensitive to X-ray irradiation.
Hidden gapless states on the path to semiconductor nanocrystals
When chemists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw were starting work on yet another material designed for the efficient production of nanocrystalline zinc oxide, they didn't expect any surprises.
Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again
A team led by scientists at Berkeley Lab found a way to make a liquid-like state behave more like a solid, and then to reverse the process.
More Nanocrystals News and Nanocrystals Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.