Nav: Home

Research on nitric oxide-releasing nanoparticles reveals viable skin infection treatment

July 31, 2017

WASHINGTON (July 31, 2017) -- George Washington University (GW) researchers have found that topically applied nitric oxide-releasing nanoparticles (NO-np) are a viable treatment for deep fungal infections of the skin caused by dermatophytes, for which the current standard of care is treatment with systemic antifungals.

Dermatophytosis, or ringworm, is a fungal infection of the skin, hair, or nails that affects millions of people around the world. While superficial infections can often be managed with topical agents, fungal infections which infiltrate the hair follicle or into deeper layers of the skin can only be effectively treated with oral or systemic antifungal therapies. Topical antifungals offer limited penetration through the skin.

"Systemic antifungals, while effective, can come with some baggage, given the duration of treatment can be lengthy. They are also known for their ability to adversely interact with many commonly used medications such as blood thinners and anti-hypertensives, or even cause various side effects themselves," said Adam Friedman, MD, associate professor of dermatology at the GW School of Medicine and Health Sciences and senior author of the study. "The purpose of this study was to explore whether nanotechnology -- materials that are billionths of a meter -- could be used to overcome need for systemic medications, which would ultimately be safer and easier on the patient."

Friedman and collaborators at the Albert Einstein College of Medicine turned to nitric oxide, a natural, gaseous immunomodulator with broad-spectrum, multi-faceted antimicrobial activity, as the ideal agent for treatment.

"While we have known for decades that nitric oxide has tremendous potential in so many areas of medicine, its use has been limited due to the lack of effective delivery systems," Friedman said. "Here we used a well-studied nanoparticle that can actually make nitric oxide, not just release it, and deliver therapeutic levels over time to attack these deep and difficult to reach infections."

In an animal model, the research team found that NO-np facilitated a quicker, more impactful response to treatment over the commercially available topical terbinafine, showing 95 percent of infection clearance by the third day of treatment. These findings are in line with multiple previous reports utilizing the NO-np against fungal and bacterial surgical wound and burn infection.

"The next step is to scale up the technology for clinical trial use in several therapeutic areas given the diverse clinical implications of the nitric oxide producing nanoformulation, as well as the platform overall given its unique ability to encapsulate and deliver a broad range of active ingredients," Friedman explained. "Dermatophyte infections impact such a large, diverse population, so it's important to find new treatments that are safe and more effective for all patients."
-end-
"Topical Nitric Oxide Releasing Nanoparticles are Effective in a Murine Model of Dermal Trichophyton rubrum Dermatophytosis" in Nanomedicine: Nanotechnology, Biology, and Medicine is available at http://www.nanomedjournal.com/article/S1549-9634(17)30127-2/abstract

Media: To interview Dr. Friedman, please contact Ashley Rizzardo at amrizz713@gwu.edu or 202-994-8679.

About the GW School of Medicine and Health Sciences:

Founded in 1824, the GW School of Medicine and Health Sciences (SMHS) was the first medical school in the nation's capital and is the 11th oldest in the country. Working together in our nation's capital, with integrity and resolve, the GW SMHS is committed to improving the health and well-being of our local, national and global communities. smhs.gwu.edu

George Washington University

Related Fungal Infections Articles:

Development of novel oral formulation to treat systemic fungal infections
The Wasan Laboratory in the Faculty of Pharmaceutical Sciences at the University of British Columbia in partnership with iCo Therapeutics Inc.
Study unravels how our immune system deals with fungal and viral infections
The body's immune response to fungal infections changes when a patient is also infected by a virus, according to new research which investigated the two types of infection together for the first time.
Fungal decisions can affect climate
Research shows fungi may slow climate change by storing more carbon.
Fungal diversity and its relationship to the future of forests
Stanford researchers predict that climate change will reduce the diversity of symbiotic fungi that help trees grow.
Probiotic yeast may offer an effective treatment for drug-resistant fungal infections
Researchers at Worcester Polytechnic Institute (WPI) & the Central Food Technological Research Institute in India are studying the effect of probiotic yeast in preventing fungal infections.
'Fungal feature tracker' could accelerate mycology research
A new software tool called Fungal Feature Tracker could accelerate understanding of fungal morphology and growth.
UMD discovers new mechanism in the liver that helps prevent invasive fungal infections
An expert in intravital microscopy, Meiqing Shi, University of Maryland, is making breakthroughs in invasive fungal infections.
Fungal invasion of pancreas creates cancer risk
Certain fungi move from the gut to the pancreas, expand their population more than a thousand-fold, and encourage pancreatic cancer growth, a new study finds.
For hospitalized patients with fungal infections, specialists save lives
Fungal bloodstream infections are responsible for the deaths of more than 10,000 people every year.
New results on fungal genetics
An international team of researchers has found unusual genetic features in fungi of the order Trichosporonales.
More Fungal Infections News and Fungal Infections Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.