New and novel technologies successfully demonstrated in soilborne disease study

July 31, 2017

St. Paul, Minn. (August 2017)--Sudden Death Syndrome (SDS), a prominent soilborne disease of soybean, can be devastating. Yield losses from SDS can reach 100%, depending on the soybean variety affected and stage of development when symptoms appear.

Due to increased occurrence, SDS has been studied a lot in recent years, and soil profiling is a major tool for researching this fungal disease. To date, nearly all soil profiling involves identifying the soil's physical and chemical characteristics wherever SDS is present.

In a new Phytobiomes journal article, titled "Unraveling Microbial and Edaphic Factors Affecting the Development of Sudden Death Syndrome in Soybean," Srour, et al. show the scientific community a new way of analyzing the soil to determine the incidence and the severity of SDS: by profiling not only the soil's physical and chemical properties, but the soil's microbes.

"The occurrence of SDS in fields is dependent on physical and biological factors, and the suppressiveness of soils to disease is a long-known phenomenon," said Dr. Ahmad Fakhoury, Associate Professor at Southern Illinois University and corresponding author of the article. "Promoting and sustaining the soil's natural suppressiveness to disease can be integral to the effective, sustainable management of soilborne pathogens."

In this study, investigators analyzed soil samples from 45 soybean fields in Illinois, Iowa, and Minnesota. Samples were collected from symptomatic patches in fields, as well as adjacent areas where SDS foliar symptoms did not develop.

Novel tools and techniques were then used in this research to detect microbial populations in "diseased" and "healthy" soils and to correlate their presence with the incidence and severity of SDS.

Through these samples, Srour et al. studied the role of soil microbial communities, as well as the soil samples' physical and chemical properties in relation to SDS development. They measured multiple soil-related factors and used markers specific to bacteria, fungi, archaea, oomycetes, and nematodes coupled with sequencing, to identify key taxa likely associated with SDS development.

Through these methods, they generated 14,200,000 sequences and mapped them against the National Center for Biotechnology Information's nucleotide database and taxonomically compared them using several bioinformatics tools.

This unique method of analysis found significant differences in the bacterial and fungal community structures between healthy and diseased areas of fields, suggesting the relative abundance of multiple microbial taxa in the soil is a key determinant in the incidence of SDS.

"The work presented in this article, documents the first attempt to assess the importance of biological factors in determining the incidence of Sudden Death Syndrome (SDS) in soybean using metagenomic tools," said Fakhoury. "This is basically a first attempt at resolving the complexity of the biological interactions that affect the occurrence of this disease."

Fakhoury says their novel approach and research techniques are important in several other ways:"The emerging tools and techniques we used permit the differentiation of complex microbial interactions," said Fakhoury. "This will ultimately allow us to devise and adopt more efficient and sustainable strategies to manage SDS and other diseases that are detrimental to agricultural production."
-end-
About Phytobiomes

Phytobiomes is a fully open access, transdisciplinary journal of sustainable plant productivity published by The American Phytopathological Society. Phytobiomes publishes original research about organisms and communities and their interaction with plants in any ecosystem. It also provides an international platform for fundamental, translational, and integrated research that accomplishes the overarching objective of offering a new vision for agriculture in which sustainable crop productivity is achieved through a systems-level understanding of the diverse interacting components of the phytobiome. These components include plant pathogens, insects, soil, microbes, weeds, biochemistry, climate, and many others. Follow us on Twitter @PhytobiomesJ.

American Phytopathological Society

Related Soybean Articles from Brightsurf:

Isoflavones in soybean help protect pigs against viral infections
Pigs that eat soybean as a regular part of their diet may be better protected against viral pathogens, a new study from University of Illinois shows.

Soybean seeding rates and risk
Broad study helps define optimal soybean seeding rates in North America.

Researchers find significant economic losses due to soybean diseases
Economic losses due to soybean diseases in the United States from 1996 to 2016 amounted to more than $95 billion, according to a team of researchers in Penn State's College of Agricultural Sciences who examined the long-term impact of soybean diseases on production in the U.S.

Soybean Innovation Lab provides knowledge that assists soybean production in Africa
The Soybean Innovation Lab (SIL), housed in the College of Agricultural, Consumer and Environmental Sciences at the University of Illinois, is funded by USAID's Feed the Future initiative to help bring research-based innovation and technology to develop soybean production in Sub-Saharan Africa.

Fungus application thwarts major soybean pest, study finds
The soybean cyst nematode sucks the nutrients out of soybean roots, causing more than $1 billion in soybean yield losses in the U.S. each year.

Organic soybean producers can be competitive using little or no tillage
Organic soybean producers using no-till and reduced-tillage production methods that incorporate cover crops -- strategies that protect soil health and water quality -- can achieve similar yields at competitive costs compared to tillage-based production.

Genes controlling mycorrhizal colonization discovered in soybean
Like most plants, soybeans pair up with soil fungi in a symbiotic mycorrhizal relationship.

Complete genome of devastating soybean pathogen assembled
An international research collaboration has successfully assembled the complete genome sequence of the pathogen that causes the devastating disease Asian soybean rust.

Chinese scientists update soybean genome to a golden reference
Soybean is one of the most important crops worldwide. A high-quality reference genome will facilitate its functional analysis and molecular breeding.

Illinois study identifies a key to soybean cyst nematode growth
The soybean cyst nematode, one of the crop's most destructive pests, isn't like most of its wormy relatives.

Read More: Soybean News and Soybean Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.