Nav: Home

Study finds parallels between unresponsive honey bees, human autism

July 31, 2017

CHAMPAIGN, Ill. -- Honey bees that consistently fail to respond to obvious social cues share something fundamental with autistic humans, researchers report in a new study. Genes most closely associated with autism spectrum disorders in humans are regulated differently in unresponsive honey bees than in their more responsive nest mates, the study found.

The findings, reported in the Proceedings of the National Academy of Sciences, appear to be unique to genes associated with autism and not to other behavioral disorders in humans.

The study is a first glimpse of the molecular heritage shared across the animal kingdom, the researchers say, and offers tantalizing clues about the evolution of social behavior.

"Some honey bees are more active than others, and some appear indifferent to intruders that threaten the hive. This, in itself, is not unusual," said University of Illinois entomology professor Gene Robinson, who led the new analysis. "Honey bees take on different roles at different stages of their lifecycle, and not every bee can - or should - function as a guard."

But when postdoctoral researcher Hagai Shpigler observed that some of those same bees also were unmoved by the presence of queen larvae - a stimulus that typically spurs diligent action in nurse bees - it suggested something unusual was going on, said Robinson, who directs the Carl R. Woese Institute for Genomic Biology at the U. of I.

"For any given task, most honey bees fall somewhere in the highly engaged to moderately engaged camp," Robinson said. "Typically, honey bees will respond more robustly to one stimulus than to another."

But a small subset of bees tested by Robinson and his colleagues were either always on - energetically responding both to intruders and to queen larvae - or always off, he said.

The unresponsive bees' lack of social awareness might be seen as similar to the social difficulties faced by some people with autism, Robinson said. But comparing behavior is not enough, he said. Analyzing the genes that drive behavior and how those genes are regulated is key to understanding whether the two phenomena are related.

To get at this question, the team analyzed 246 groups of bees from seven genetically distinct honey bee colonies, carefully testing each bee in various social contexts, then analyzing levels of gene expression in their brains. They found that more than 1,000 genes were regulated differently between unresponsive bees, nurse bees and guards.

The researchers next turned to a list of genes and gene expression profiles associated with autism in humans. Their goal was to determine whether a significant proportion of the autism-related genes also played a role in the unresponsive bees.

"We figured out a way to make an unbiased statistical test that will tell us whether a human gene list and a honey bee gene list overlap more or less than expected by chance," said Michael Saul, a postdoctoral researcher who led the statistical analysis with statistics professor Sihai D. Zhao.

That test revealed significant overlap between the unresponsive honey bees' gene expression profile and genes closely associated with autism in humans. Further analyses found no significant overlap with human genes associated with depression, schizophrenia or several other mental disorders, or with other bee gene lists.

"Our data are telling us that social unresponsiveness does have some common molecular characteristics in these distantly related species," Robinson said.

"It's important to point out some caveats," he said. "Humans are not big bees and bees are not little humans. The social responsiveness depends on context, and is different in the two cases. Autism spectrum disorder is very complex, and unresponsiveness is not the only behavior associated with it."

While social behavior likely evolved independently in honey bees and humans, Robinson said, "our data reveal that they make use of common toolkits, common building blocks."

"What really excites me about this study is that there appears to be this kernel of similarity between us and honey bees, a common animal inheritance that potentially drives social behavior in similar ways," Saul said. "We haven't proved this, but this work is telling us where to look for that in the future."
-end-
The Simons Foundation and the National Science Foundation supported this research.

Editor's notes:

To reach Gene Robinson, call 217-265-0309; email generobi@illinois.edu.

The paper "Deep evolutionary conservation of autism-related genes" is available to members of the media from the U. of I. News Bureau.

University of Illinois at Urbana-Champaign

Related Autism Articles:

Adulthood with autism
The independence that comes with growing up can be scary for any teenager, but for young adults with autism spectrum disorder and their caregivers, the transition from adolescence to adulthood can seem particularly daunting.
Brain protein mutation from child with autism causes autism-like behavioral change in mice
A de novo gene mutation that encodes a brain protein in a child with autism has been placed into the brains of mice.
Autism and theory of mind
Theory of mind, or the ability to represent other people's minds as distinct from one's own, can be difficult for people with autism.
Potential biomarker for autism
A study of young children with autism spectrum disorder published in JNeurosci reveals altered brain waves compared to typically developing children during a motor control task.
Autism and the smell of fear
Autism typically involves the inability to read social cues. We most often associate this with visual difficulty in interpreting facial expression, but new research at the Weizmann Institute of Science suggests that the sense of smell may also play a central role in autism.
Autism often associated with multiple new mutations
Most autism cases are in families with no previous history of the disorder.
State laws requiring autism coverage by private insurers led to increases in autism care
A new study led by researchers at the Johns Hopkins Bloomberg School of Public Health has found that the enactment of state laws mandating coverage of autism spectrum disorder (ASD) was followed by sizable increases in insurer-covered ASD care and associated spending.
Autism's gender patterns
Having one child with autism is a well-known risk factor for having another one with the same disorder, but whether and how a sibling's gender influences this risk has remained largely unknown.
Pinpointing the origins of autism
The origins of autism remain mysterious. What areas of the brain are involved, and when do the first signs appear?
Genes, ozone, and autism
Exposure to ozone in the environment puts individuals with high levels of genetic variation at an even higher risk for developing autism than would be expected just by adding the two risk factors together, a new analysis shows.
More Autism News and Autism Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.