Nav: Home

Astronomers find that the sun's core rotates four times faster that its surface

July 31, 2017

The sun's core rotates nearly four times faster than the sun's surface, according to new findings by an international team of astronomers. Scientists had assumed the core was rotating like a merry-go-round at about the same speed as the surface.

"The most likely explanation is that this core rotation is left over from the period when the sun formed, some 4.6 billion years ago," said Roger Ulrich, a UCLA professor emeritus of astronomy, who has studied the sun's interior for more than 40 years and co-author of the study that was published today in the journal Astronomy and Astrophysics. "It's a surprise, and exciting to think we might have uncovered a relic of what the sun was like when it first formed."

The rotation of the solar core may give a clue to how the sun formed. After the sun formed, the solar wind likely slowed the rotation of the outer part of the sun, he said. The rotation might also impact sunspots, which also rotate, Ulrich said. Sunspots can be enormous; a single sunspot can even be larger than the Earth.

The researchers studied surface acoustic waves in the sun's atmosphere, some of which penetrate to the sun's core, where they interact with gravity waves that have a sloshing motion similar to how water would move in a half-filled tanker truck driving on a curvy mountain road. From those observations, they detected the sloshing motions of the solar core. By carefully measuring the acoustic waves, the researchers precisely determined the time it takes an acoustic wave to travel from the surface to the center of the sun and back again. That travel time turns out to be influenced a slight amount by the sloshing motion of the gravity waves, Ulrich said.

The researchers identified the sloshing motion and made the calculations using 16 years of observations from an instrument called GOLF (Global Oscillations at Low Frequency) on a spacecraft called SoHO (the Solar and Heliospheric Observatory) -- a joint project of the European Space Agency and NASA. The method was developed by the researchers, led by astronomer Eric Fossat of the Observatoire de la Côte d'Azur in Nice, France. Patrick Boumier with France's Institut d'Astrophysique Spatiale is GOLF's principal investigator and a co-author of the study.

The idea that the solar core could be rotating more rapidly than the surface has been considered for more than 20 years, but has never before been measured.

The core of the sun differs from its surface in another way as well. The core has a temperature of approximately 29 million degrees Fahrenheit, which is 15.7 million Kelvin. The sun's surface is "only" about 30,000 degrees Fahrenheit, or 5,800 Kelvin.

Ulrich worked with the GOLF science team, analyzing and interpreting the data for 15 years. Ulrich received funding from NASA for his research. The GOLF instrument was funded primarily by the European Space Agency.

SoHO was launched on Dec. 2, 1995 to study the sun from its core to the outer corona and the solar wind; the spacecraft continues to operate.

University of California - Los Angeles

Related Solar Wind Articles:

Table top plasma gets wind of solar turbulence
Scientists from India and Portugal recreate solar turbulence on a table top using a high intensity ultrashort laser pulse to excite a hot, dense plasma and followed the evolution of the giant magnetic field generated by the plasma dynamics.
UNH researcher identifies key differences in solar wind models
The challenge of predicting space weather, which can cause issues with telecommunications and other satellite operations on Earth, requires a detailed understanding of the solar wind (a stream of charged particles released from the sun) and sophisticated computer simulations.
NASA's solar dynamics observatory captured trio of solar flares April 2-3
The sun emitted a trio of mid-level solar flares on April 2-3, 2017.
The economic case for wind and solar energy in Africa
To meet skyrocketing demand for electricity, African countries may have to triple their energy output by 2030.
Chemists create molecular 'leaf' that collects and stores solar power without solar panels
An international research team centered at Indiana University have engineered a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide -- a carbon-neutral fuel source -- more efficiently than any other method of 'carbon reduction.' The discovery, reported today in the Journal of the American Chemical Society, is a new milestone in the quest to recycle carbon dioxide in the Earth's atmosphere into carbon-neutral fuels and others materials.
More Solar Wind News and Solar Wind Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...