Astronomers find that the sun's core rotates four times faster that its surface

July 31, 2017

The sun's core rotates nearly four times faster than the sun's surface, according to new findings by an international team of astronomers. Scientists had assumed the core was rotating like a merry-go-round at about the same speed as the surface.

"The most likely explanation is that this core rotation is left over from the period when the sun formed, some 4.6 billion years ago," said Roger Ulrich, a UCLA professor emeritus of astronomy, who has studied the sun's interior for more than 40 years and co-author of the study that was published today in the journal Astronomy and Astrophysics. "It's a surprise, and exciting to think we might have uncovered a relic of what the sun was like when it first formed."

The rotation of the solar core may give a clue to how the sun formed. After the sun formed, the solar wind likely slowed the rotation of the outer part of the sun, he said. The rotation might also impact sunspots, which also rotate, Ulrich said. Sunspots can be enormous; a single sunspot can even be larger than the Earth.

The researchers studied surface acoustic waves in the sun's atmosphere, some of which penetrate to the sun's core, where they interact with gravity waves that have a sloshing motion similar to how water would move in a half-filled tanker truck driving on a curvy mountain road. From those observations, they detected the sloshing motions of the solar core. By carefully measuring the acoustic waves, the researchers precisely determined the time it takes an acoustic wave to travel from the surface to the center of the sun and back again. That travel time turns out to be influenced a slight amount by the sloshing motion of the gravity waves, Ulrich said.

The researchers identified the sloshing motion and made the calculations using 16 years of observations from an instrument called GOLF (Global Oscillations at Low Frequency) on a spacecraft called SoHO (the Solar and Heliospheric Observatory) -- a joint project of the European Space Agency and NASA. The method was developed by the researchers, led by astronomer Eric Fossat of the Observatoire de la Côte d'Azur in Nice, France. Patrick Boumier with France's Institut d'Astrophysique Spatiale is GOLF's principal investigator and a co-author of the study.

The idea that the solar core could be rotating more rapidly than the surface has been considered for more than 20 years, but has never before been measured.

The core of the sun differs from its surface in another way as well. The core has a temperature of approximately 29 million degrees Fahrenheit, which is 15.7 million Kelvin. The sun's surface is "only" about 30,000 degrees Fahrenheit, or 5,800 Kelvin.

Ulrich worked with the GOLF science team, analyzing and interpreting the data for 15 years. Ulrich received funding from NASA for his research. The GOLF instrument was funded primarily by the European Space Agency.

SoHO was launched on Dec. 2, 1995 to study the sun from its core to the outer corona and the solar wind; the spacecraft continues to operate.

University of California - Los Angeles

Related Solar Wind Articles from Brightsurf:

Wind beneath their wings: Albatrosses fine-tuned to wind conditions
A new study of albatrosses has found that wind plays a bigger role in their decision to take flight than previously thought, and due to their differences in body size, males and females differ in their response to wind.

New research deepens understanding of Earth's interaction with the solar wind
A team of scientists at PPPL and Princeton University has reproduced a process that occurs in space to deepen understanding of what happens when the Earth encounters the solar wind.

Hydropower plants to support solar and wind energy in West Africa
Study maps smart electricity mix composed of solar, wind and hydropower for West Africa -- regional cooperation can provide up to 60% reliable and clean electricity

Solar and wind energy sites mapped globally for the first time
Researchers at the University of Southampton have mapped the global locations of major renewable energy sites, providing a valuable resource to help assess their potential environmental impact.

New research helps explain why the solar wind is hotter than expected
When the sun expels plasma, the solar wind cools as it expands through space -- but not as much as the laws of physics would predict.

Solar wind samples suggest new physics of massive solar ejections
A new study led by the University of Hawai'i (UH) at Mānoa has helped refine understanding of the amount of hydrogen, helium and other elements present in violent outbursts from the Sun, and other types of solar 'wind,' a stream of ionized atoms ejected from the Sun.

Supporting structures of wind turbines contribute to wind farm blockage effect
Much about the aerodynamic effects of larger wind farms remains poorly understood.

Parker Solar Probe traces solar wind to its source on sun's surface: coronal holes
New data from the Parker Solar Probe, which got closer to the sun than any other spacecraft, allowed physicists to map the source of a major component of the solar wind that continually peppers Earth.

Closest-ever approach to the sun gives new insights into the solar wind
The Parker Solar Probe spacecraft, which has flown closer to the sun than any mission before, has found new evidence of the origins of the solar wind.

SwRI-built instrument confirms solar wind slows farther away from the Sun
Measurements taken by the Solar Wind Around Pluto (SWAP) instrument aboard NASA's New Horizons spacecraft are providing important new insights from some of the farthest reaches of space ever explored.

Read More: Solar Wind News and Solar Wind Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to