Nav: Home

A colossal breakthrough for topological spintronics

July 31, 2018

Scientists have developed the world's best-performing pure spin current source[1] made of bismuth-antimony (BiSb) alloys, which they report as the best candidate for the first industrial application of topological insulators[2]. The achievement represents a big step forward in the development of spin-orbit torque magnetoresistive random-access memory (SOT-MRAM)[3] devices with the potential to replace existing memory technologies.

A research team led by Pham Nam Hai at the Department of Electrical and Electronic Engineering, Tokyo Institute of Technology (Tokyo Tech), has developed thin films of BiSb for a topological insulator that simultaneously achieves a colossal spin Hall effect[4] and high electrical conductivity.

Their study, published in Nature Materials, could accelerate the development of high-density, ultra-low power, and ultra-fast non-volatile memories for Internet of Things (IoT) and other applications now becoming increasingly in demand for industrial and home use.

The BiSb thin films achieve a colossal spin Hall angle of approximately 52, conductivity of 2.5 x 105 and spin Hall conductivity of 1.3×107 at room temperature. (See Table 1 for a performance summary, including all units.) Notably, the spin Hall conductivity is two orders of magnitude greater than that of bismuth selenide (Bi2Se3), reported in Nature in 2014.

Making SOT-MRAM a viable choice

Until now, the search for suitable spin Hall materials for next-generation SOT-MRAM devices has been faced with a dilemma: First, heavy metals such as platinum, tantalum and tungsten have high electrical conductivity but a small spin Hall effect. Second, topological insulators investigated to date have a large spin Hall effect but low electrical conductivity.

The BiSb thin films satisfy both requirements at room temperature. This raises the real possibility that BiSb-based SOT-MRAM could outperform the existing spin-transfer torque (STT) MRAM technology.

"As SOT-MRAM can be switched one order of magnitude faster than STT-MRAM, the switching energy can be reduced by at least two orders of magnitude," says Pham. "Also, the writing speed could be increased 20 times and the bit density increased by a factor of ten."

The viability of such energy-efficient SOT-MRAMs has recently been demonstrated in experiments, albeit using heavy metals, conducted by IMEC, the international R&D and innovation hub headquartered in Leuven, Belgium.

If scaled up successfully, BiSb-based SOT-MRAM could drastically improve upon its heavy metal-based counterparts and even become competitive with dynamic random access memory (DRAM), the dominant technology of today.

An attractive, overlooked material

BiSb has tended to be overlooked by the research community due to its small band gap[5] and complex surface states. However, Pham says: "From an electrical engineering perspective, BiSb is very attractive due to its high carrier mobility, which makes it easier to drive a current within the material."

"We knew that BiSb has many topological surface states, meaning we could expect a much stronger spin Hall effect. That's why we started studying this material about two years ago."

The thin films were grown using a high-precision method called molecular beam epitaxy (MBE). The researchers discovered a particular surface orientation named BiSb(012), which is thought to be a key factor behind the large spin Hall effect. Pham points out that the number of Dirac cones[6]0 on the BiSb(012) surface is another important factor, which his team is now investigating.

Challenges ahead

Pham is currently collaborating with industry to test and scale up BiSb-based SOT-MRAM.

"The first step is to demonstrate manufacturability," he says. "We aim to show it's still possible to achieve a strong spin Hall effect, even when BiSb thin films are fabricated using industry-friendly technologies such as the sputtering method."

"It's been over ten years since the emergence of topological insulators, but it was not clear whether those materials could be used in realistic devices at room temperature. Our research brings topological insulators to a new level, where they hold great promise for ultra-low power SOT-MRAM."
-end-
Technical terms

[1] Pure spin current: A phenomenon whereby spin angular momentum, but not charge, is transported.

[2] Topological insulators: Materials with highly electrically conductive surfaces, but which act as insulators on the inside. Such materials are of great interest in the quest to develop high-performing electronic devices that generate less heat.

[3] SOT-MRAM: Spin-orbit torque (SOT) switching using the spin Hall effect is increasingly viewed as a successor to conventional spin-transfer torque (STT) switching for magnetoresistive random-access memory (MRAM) technologies.

[4] Spin Hall effect: A Hall effect for spins originating from the coupling of charge and spin. Pure spin currents can be generated via the spin Hall effect.

[5] Band gap: An energy range in an insulator or semiconductor in which no electron states can exist.

[6] Dirac cones: Unique electronic structures that occur in topological insulators that represent linear energy dispersion.

https://www.titech.ac.jp/english/research/stories/faces24_pham.html

http://magn.pe.titech.ac.jp/lab/

Tokyo Institute of Technology

Related Topological Insulators Articles:

Spinning electrons open the door to future hybrid electronics
A discovery of how to control and transfer spinning electrons paves the way for novel hybrid devices that could outperform existing semiconductor electronics.
New method could enable more stable and scalable quantum computing, Penn physicists report
Researchers from the University of Pennsylvania, in collaboration with Johns Hopkins University and Goucher College, have discovered a new topological material which may enable fault-tolerant quantum computing.
Research accelerates quest for quicker, longer-lasting electronics
In the world of electronics, where the quest is always for smaller and faster units with infinite battery life, topological insulators (TI) have tantalizing potential.
Observation of the phase transition of liquid crystal defects for the first time
KAIST researchers observed the phase transition of topological defects formed by liquid crystal (LC) materials for the first time.
Measured for the first time: Direction of light waves changed by quantum effect
Certain materials can be used to rotate the direction in which the light is oscillating.
Group works toward devising topological superconductor
A team led by Cornell physics associate professor Eun-Ah Kim has proposed a topological superconductor made from an ultrathin transition metal dichalcogenide that is a step toward quantum computing.
Artificial topological matter opens new research directions
An international team of researchers have created a new structure that allows the tuning of topological properties in such a way as to turn on or off these unique behaviors.
Gray tin exhibits novel topological electronic properties in 3-D
In a surprising new discovery, alpha-tin, commonly called gray tin, exhibits a novel electronic phase when its crystal structure is strained, putting it in a rare new class of 3-D materials called topological Dirac semimetals (TDSs).
Chinese scientists discovered tip induced unconventional superconductivity on Weyl semimetals
By using hard point contact measurement on Weyl semimetal TaAs single crystal, Chinese scientists discovered tip induced unconventional superconductivity around contact region on TaAs, which may have nontrivial topology.
The discovery of Majorana fermion
Majorana fermion can serve as the building block of fault tolerant topological quantum computing.

Related Topological Insulators Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".