Nav: Home

Real-time foot-and-mouth strategy to better fight disease

July 31, 2018

  • New real-time strategy for future foot-and-mouth outbreaks finds that focusing on surveillance and vaccination is most effective method to quickly fight spread of the virus
  • Researchers from University of Warwick develop model based on previous outbreaks, analysing best approach at every stage of outbreak - even with minimal information at the start of the outbreak
  • Local targeted methods are always the most effective method to halt disease spread
Future outbreaks of foot-and-mouth (FMD) disease can be combatted quickly and efficiently from early on - when authorities have minimal information - thanks to a new real-time strategy, developed by researchers at the University of Warwick.

Dr Michael Tildesley and Dr William Probert in Warwick's School of Life Sciences and Mathematics Institute discovered that the most effective policies for the start of a FMD outbreak, even when we know very little about it, are focusing on surveillance and vaccination.

Determining the optimal strategy to control FMD can be challenging in the first weeks of an epidemic, due to uncertainty about the nature of the outbreak and how the disease will be spread. The researchers sought to resolve this uncertainty, enabling the spread of the disease to be controlled more rapidly and effectively than in the past.

Using data from previous FMD outbreaks - the UK in 2001 and Japan in 2010 - they simulated the spread of disease, and at each stage of the outbreak analysed the real-time efficacy of multiple different approaches.

These methods included:
  • Culling only infected farms
  • Culling infected farms, plus farms designated as dangerous contact
  • Culling infected farms, dangerous contact farms and neighbouring farms (contiguous culling)
  • Ring culling at three kilometres, and at ten kilometres
  • Vaccination at three kilometres, and at ten kilometres
At every stage in an outbreak, regardless of the uncertainty in case reporting, local targeted approaches (culling of infected premises and ring vaccination around confirmed infected farms) were always found to be the most effective.

On the other hand, ring culling was never an effective method. The researchers conclude that, owing to the spatial uncertainty in model predictions during the early stages of an epidemic, targeted surveillance is crucial to allow authorities to gain information and resolve uncertainty as quickly as possible, ultimately better controlling the spread of the disease earlier in an outbreak.

Dr Michael Tildesley, Associate Professor in the University of Warwick's School of Life Sciences and Mathematics Institute, commented:

"This work highlights both the limitations and the benefits of using an infectious disease model in real time, during an ongoing outbreak. It is crucial for policymakers to employ surveillance to resolve uncertainty in how the disease is spreading as rapidly as possible, as this may have significant implications upon our ability to predict future epidemic behaviour."

Most mathematical models developed for disease control look back to previous outbreaks and make their calculations using all the information from the whole episode - this new strategy is rare in that it works out the best approach with only the information to hand in the middle of an outbreak.
-end-
Notes to editors:

The research, Real-time decision-making during emergency disease outbreaks, is published in PLOS Computational Biology. https://doi.org/10.1371/journal.pcbi.1006202

University of Warwick

Related Disease Articles:

Viewpoint: Could disease pathogens be the dark matter behind Alzheimer's disease?
In a lively discussion appearing in the Viewpoint section of the journal Nature Reviews Neurology, Ben Readhead, a researcher in the ASU-Banner Neurodegenerative Disease Research Center at the Biodesign Institute joins several distinguished colleagues to discuss the idea that bacteria, viruses or other infectious pathogens may play a role in Alzheimer's disease.
Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.
Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.
Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).
30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.
Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.
Inflammatory bowel disease appears to impact risk of Parkinson's disease
Amsterdam, NL, November 14, 2019 - Relatively new research findings indicating that the earliest stages of Parkinson's disease (PD) may occur in the gut have been gaining traction in recent years.
Contact sports associated with Lewy body disease, Parkinson's disease symptoms, dementia
There is mounting evidence that repetitive head impacts from contact sports and other exposures are associated with the neurodegenerative disease chronic traumatic encephalopathy (CTE) and dementia.
In kidney disease patients, illicit drug use linked with disease progression and death
Among individuals with chronic kidney disease, hard illicit drug use was associated with higher risks of kidney disease progression and early death.
Despite reductions in infectious disease mortality in US, diarrheal disease deaths on the rise
Deaths from infectious diseases have declined overall in the United States over the past three decades.
More Disease News and Disease Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.