Real-time foot-and-mouth strategy to better fight disease

July 31, 2018

Future outbreaks of foot-and-mouth (FMD) disease can be combatted quickly and efficiently from early on - when authorities have minimal information - thanks to a new real-time strategy, developed by researchers at the University of Warwick.

Dr Michael Tildesley and Dr William Probert in Warwick's School of Life Sciences and Mathematics Institute discovered that the most effective policies for the start of a FMD outbreak, even when we know very little about it, are focusing on surveillance and vaccination.

Determining the optimal strategy to control FMD can be challenging in the first weeks of an epidemic, due to uncertainty about the nature of the outbreak and how the disease will be spread. The researchers sought to resolve this uncertainty, enabling the spread of the disease to be controlled more rapidly and effectively than in the past.

Using data from previous FMD outbreaks - the UK in 2001 and Japan in 2010 - they simulated the spread of disease, and at each stage of the outbreak analysed the real-time efficacy of multiple different approaches.

These methods included:At every stage in an outbreak, regardless of the uncertainty in case reporting, local targeted approaches (culling of infected premises and ring vaccination around confirmed infected farms) were always found to be the most effective.

On the other hand, ring culling was never an effective method. The researchers conclude that, owing to the spatial uncertainty in model predictions during the early stages of an epidemic, targeted surveillance is crucial to allow authorities to gain information and resolve uncertainty as quickly as possible, ultimately better controlling the spread of the disease earlier in an outbreak.

Dr Michael Tildesley, Associate Professor in the University of Warwick's School of Life Sciences and Mathematics Institute, commented:

"This work highlights both the limitations and the benefits of using an infectious disease model in real time, during an ongoing outbreak. It is crucial for policymakers to employ surveillance to resolve uncertainty in how the disease is spreading as rapidly as possible, as this may have significant implications upon our ability to predict future epidemic behaviour."

Most mathematical models developed for disease control look back to previous outbreaks and make their calculations using all the information from the whole episode - this new strategy is rare in that it works out the best approach with only the information to hand in the middle of an outbreak.
-end-
Notes to editors:

The research, Real-time decision-making during emergency disease outbreaks, is published in PLOS Computational Biology. https://doi.org/10.1371/journal.pcbi.1006202

University of Warwick

Related Disease Articles from Brightsurf:

CLCN6 identified as disease gene for a severe form of lysosomal neurodegenerative disease
A mutation in the CLCN6 gene is associated with a novel, particularly severe neurodegenerative disorder.

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.

Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.

Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).

30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.

Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.

Read More: Disease News and Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.