Nav: Home

Chinese researchers further develop adenine base editing system

July 31, 2018

Two research teams from East China Normal University and Sun Yat-Sen University in China have developed and improved the ABE system in mouse and rat strains, which has great implications for human genetic disorders and gene therapy. The research has been published by Springer Nature in two articles in the open access journal Protein & Cell.

The human gene is composed of the bases Adenine (A), Thymine (T), Cytosine (C) and Guanine (G), which are arranged in a particular order to encode genetic information. The ABE system is able to generate a desired Adenine (A) to Guanine (G) conversion and therefore allows scientists to alter genetic codes with minimal undesired outcomes. Since almost half of human genetic diseases are caused by C/G to T/C mutation, which could be ideally corrected through ABE, this is a promising technology for therapeutic applications.

Mice and rats are two of the most critical model organisms for biological and medical studies because they can be easily bred and are physiologically similar to humans. Using genetically modified rodent models scientists have made significant progress in understanding human biology, disease pathology and the development of therapeutics for numerous diseases. However, it is not easy to generate mouse or rat strains containing point mutants identified in human diseases, even with targeted genome editing like CRISPR/Cas9.

In these studies, the researchers used the ABE system to efficiently generate three mice strains to mimic the genetic muscle degeneration disorder called Dunchenne Muscular Dystrophy (DMD). They also used a rat model to mimic the hereditary glycogen storage disease type II known as GSD?or Pompe disease. These models could be an important resource for testing innovative therapeutics, especially gene therapy.

"It is critical to expand the targeting scope of the ABE system and test its efficiency and editing window in cells and animals," says Dali Li.

His group at East China Normal University has enabled targeting of genomic sites that were not covered by the original ABE system. They used chemically modified "guide RNAs" (gRNAs) to enhance the overall editing efficiency.

"The early results are promising," Li says. "We are working hard to apply this powerful tool in preclinical therapeutic studies to develop novel gene therapy strategies for different human genetic disorders. I believe that clinical application will be in the near future, although the improvement of overall efficiency and the delivery system for ABE is a challenge."
-end-
References

Li, D. et al (2018). Increasing targeting scope of adenosine base editors in mouse and rat embryos, Protein & Cell DOI: 10.1007/s13238-018-0568-x

Songyang, Z. et al (2018). Effective and precise adenine base editing in mouse zygotes, Protein & Cell DOI: 10.1007/s13238-018-0566-z

Springer

Related Gene Therapy Articles:

Gene therapy/gene editing combo could offer hope for some genetic disorders
A hybrid approach that combines elements of gene therapy with gene editing converted an experimental model of a rare genetic disease into a milder form, significantly enhancing survival, shows a multi-institutional study led by the University of Pennsylvania and Children's National Hospital in Washington, D.C.
Using gene therapy to treat chronic traumatic encephalopathy
A new study shows the feasibility of using gene therapy to treat the progressive neurodegenerative disorder chronic traumatic encephalopathy (CTE).
New technology allows control of gene therapy doses
Scientists at Scripps Research in Jupiter have developed a special molecular switch that could be embedded into gene therapies to allow doctors to control dosing.
Gene therapy: Development of new DNA transporters
Scientists at the Institute of Pharmacy at Martin Luther University Halle-Wittenberg (MLU) have developed new delivery vehicles for future gene therapies.
Non-viral gene therapy to speed up cancer research
A new treatment method promises to speed up gene therapy research and could bring new, patient friendly cancer treatments to market faster.
Gene therapy promotes nerve regeneration
Researchers from the Netherlands Institute for Neuroscience and the Leiden University Medical Center have shown that treatment using gene therapy leads to a faster recovery after nerve damage.
Gene therapy for blood disorders
Delivering gene-regulating material to cells that live deep in our bone marrow and direct the formation of blood cells.
Realizing the potential of gene therapy for neurological disorders
Promising findings from preclinical animal studies show the potential of gene therapy for treating incurable neurological disorders.
Gene therapy vectors carrying the telomerase gene do not increase the risk of cancer
Researchers from the Spanish National Cancer Research Centre (CNIO) have shown in a new study that the gene therapy with telomerase that they have developed, and which has proven to be effective in mice against diseases caused by excessive telomere shortening and ageing, does not cause cancer or increase the risk of developing it, even in a cancer-prone setting.
Study advances gene therapy for glaucoma
In a study published today in the scientific journal Investigative Ophthalmology and Visual Science, Kaufman and Curtis Brandt, a fellow professor of ophthalmology and visual sciences at UW-Madison, showed an improved tactic for delivering new genes into the eye's fluid drain, called the trabecular meshwork.
More Gene Therapy News and Gene Therapy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.