Nav: Home

Mapping of magnetic particles in the human brain

July 31, 2018

Many living organisms, such as migratory birds, are thought to possess a magnetotactic sense, which enables them to respond to the Earth's magnetic field. Whether or not humans are capable of sensing magnetism is the subject of debate. However, several studies have already shown that one of the preconditions required for such a magnetic sensory system is indeed met: magnetic particles exist in the human brain. Now a team led by Stuart A. Gilder (a professor at LMU's Department of Earth and Environmental Sciences) and Christoph Schmitz (a professor at LMU's Department of Neuroanatomy) has systematically mapped the distribution of magnetic particles in human post mortem brains. Their findings were published in the journal Scientific Reports (Nature Publishing Group)

In their study, the LMU researchers confirmed the presence of magnetic particles in human brains. The particles were found primarily in the cerebellum and the brainstem, and there was striking asymmetry in the distribution between the left and right hemispheres of the brain. "The human brain exploits asymmetries in sensory responses for spatial orientation, and also for sound-source localization," Schmitz explains. The asymmetric distribution of the magnetic particles is therefore compatible with the idea that humans might have a magnetic sensor. But in all probability, this sensor is much too insensitive to serve any useful biological function, he adds. Furthermore, the chemical nature of the magnetic particles remains unknown. "We assume that they are all made of magnetite (Fe3O4), but it is not yet possible to be sure," says Gilder.

The study was funded by the Volkswagen Foundation's "Experiment!" program, which is designed specifically to get daring new research projects, whose ultimate is uncertain, off the ground. The data were obtained from seven human post mortem brains, which had been donated for use in medical research. In all, a total of 822 tissue samples were subjected to magnetometry. The measurements were performed under the supervision of Stuart Gilder in a magnetically shielded laboratory located in a forest 80 km from Munich which is largely free from pervasive magnetic pollution that is characteristic of urban settings nowadays.

In further experiments, the LMU team plans to characterize the properties of the magnetic particles found in human brains. In collaboration with Professor Patrick R. Hof (Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York), they also hope to perform analogous localization studies on far larger mammals - whales. These huge marine mammals are known to migrate between feeding and breeding grounds across great distances in the world's oceans. "We want determine whether we can detect magnetic particles in the brains of whales, and if so whether they are also asymmetrically distributed" says Schmitz. "It goes without saying that such studies will be carried out on animals that have died of natural causes."
-end-


Ludwig-Maximilians-Universität München

Related Brain Articles:

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
Is whole-brain radiation still best for brain metastases from small-cell lung cancer?
University of Colorado Cancer Center study compares outcomes of 5,752 small-cell lung cancer patients who received whole-brain radiation therapy (WBRT) with those of 200 patients who received stereotactic radiosurgery (SRS), finding that the median overall survival was actually longer with SRS (10.8 months with SRS versus 7.1 months with WBRT).
Atlas of brain blood vessels provides fresh clues to brain diseases
Even though diseases of the brain vasculature are some of the most common causes of death in the West, knowledge of these blood vessels is limited.
Brain sciences researcher pinpoints brain circuit that triggers fear relapse
Steve Maren, the Claude H. Everett Jr. '47 Chair of Liberal Arts professor in the Department of Psychological and Brain Sciences at Texas A&M University, and his Emotion and Memory Systems Laboratory (EMSL) have made a breakthrough discovery in the process of fear relapse.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.