Nav: Home

Scientists uncover new facts concerning working memory in children

July 31, 2018

Researchers from the Higher School of Economics conducted a meta-analysis by compiling data across 17 neuroimaging studies on working memory in children. The data obtained shows concordance in frontoparietal regions recognized for their role in working memory as well as regions not typically highlighted as part of the working memory network, such as the insula. The results were published in the article 'N-back Working Memory Task: Meta-analysis of Normative fMRI Studies With Children' in a top journal in the field, Child Development.

Working memory refers to the system that helps us keep things in mind while performing complex tasks such as reasoning, comprehension and learning. For example, we use our working memory to remember a shopping list or a telephone number, or to calculate how long it will take to get somewhere and what time we should leave so that we can get there on time. It is well known that working memory increases with age. For example, it is easier for an 11 year-old to learn more complex concepts, such as decimals and fractions in math class, than it is for a 7 year-old, as the working memory for an 11 year-old is greater.

Previous neuroimaging studies with adults have identified the areas of the brain that are activated when a person's working memory is implicated; however, data from children were unclear. In this particular project, scientists performed a meta-analysis of data from 17 different working memory neuroimaging studies carried out with children. Collectively, the studies examined brain responses of 260 children from 6 to 15 years.

Children were asked to play a cognitive game called the 'n-back task', which is likely, the most popular measure of working memory. To play this game children indicate if the picture they are looking at is the same or different from the picture 'n' times back; as the number of 'n' increases difficulty increases. While the children are playing the game, scientists use functional magnetic resonance imaging (fMRI) to collect brain images. By looking at the images generated, scientists see where the blood was flowing at certain points in time, for example, as the child was playing an easy level or a difficult level of the game.

Zachary Yaple, a PhD candidate, and Marie Arsalidou, an Assistant Professor at HSE, evaluated agreement of the data from the 17 studies using activation likelihood estimation. Upon averaging the results across the age groups, they found that children implicate posterior parts of the brain similarly to adults. This is to be expected, as the posterior parietal cortex processes visual-spatial aspects of stimuli. Problem-solving, on the other hand, and higher order attention processes, require the prefrontal cortex, which is located at the front of the brain. Interestingly, across studies, no agreement whatsoever was observed in the prefrontal cortex. This result was unexpected, due to the fact that each separate study had reported prefrontal cortex activity, though not always in exactly the same place. HSE scientists concluded that averaging the data across the wide age range, as is often done in developmental neuroscience, resulted in a loss of information.

'This is an important finding for future research', said Marie Arsalidou. 'In order to capture the changes in working memory as children get older, scientists should examine narrower age groups. Averaging data erases vital information.' She stressed the need to carry out meta-analyses like this one in order to better understand the mass of data that is now available to researchers across the world.

HSE scientists also identified activity in regions not typically highlighted as part of the working memory network, such as the insula. This part of the brain is usually linked to emotion or the regulation of the body's homeostasis. The insula is located deeper in the brain, between the frontal and temporal lobes of the brain, and this finding sheds a little more light on its complex role.

Above all, research in developmental cognitive neuroscience has the potential to change the way we think about how we learn. 'It's important for education and, further down the road, to make positive steps in public policy,' explained Marie Arsalidou. 'Maybe one day, we'll take into consideration how the brain develops and how we can use this to make learning more powerful at these critical ages. By understanding basic brain development in children, we may be able to create interventions or programs that would improve their learning experience'.
-end-


National Research University Higher School of Economics

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...