Nav: Home

How chronic infections can outsmart the immune system

July 31, 2018

Like many chronic infections, visceral leishmaniasis thwarts the immune system's defenses so it can settle comfortably into its host. Responsible for tens of thousands of deaths around the world every year, visceral leishmaniasis holds the unfortunate distinction of being the second leading cause of death by parasitic infection, after malaria. But how does it slip through the host's defenses? Professor Simona Stäger's team at INRS has discovered a mechanism that Leishmania donovani takes advantage of to sustain the infection. It has shown that damage from chronic inflammation induces the death of white blood cells essential to eliminating the parasite. The findings, which were published in the prestigious journal Cell Reports, not only have the potential to lead to possible treatment, they also bring to light a phenomenon that may be shared by other chronic infections.


At the heart of the immune response, CD4 T cells are essential to controlling an infection. This type of white blood cell participates in the immune response by signaling the presence of a pathogen to be eliminated. To do this, CD4 T cells produce a molecule called interferon gamma (IFN-γ), which activates the cells that destroy pathogens.

In the case of visceral leishmaniasis, CD4 T cells expressing IFN-γ (Th1 cells) appear later than expected during infection and in smaller numbers, a phenomenon that had puzzled researchers. "Now we've found the reason why there are so few," said Professor Stäger. "Unfortunately, these protective cells are dying."


To understand how CD4 T cells are dying, researchers followed a lead identified in one of their recent studies. They had noticed the presence of a transcription factor unusual for these cells. A transcription factor is a protein that modulates the activity of one or more genes. The detected factor, IRF-5, is known for its action in innate immunity cells, but is role was totally unknown in CD4 T cells.

Professor Stäger's new findings show that IRF-5 leads Th1 cells to self-destruct. Tracing the thread of molecular events, the immunologist pinned down the trigger for this unexpected cell death: tissue destruction. Following a series of reactions, which are still not fully understood, the destroyed tissue activates previously unknown signals in Th1 cells, causing them to die.

The white blood cells that orchestrate the attack are thus eliminated--not by the parasite but by a biological process of the host--sustaining the chronic infection and protecting the parasite. In fact, this mechanism may also be at play in other chronic infections that lead to inflammation.

Given the importance of better understanding the workings of this process, INRS professor successfully secured $1 million in funding from the Canadian Institutes of Health Research. The cellular activity induced by IRF-5 in immune cells could reveal as-yet unknown therapeutic targets not only for visceral leishmaniasis, but also for other chronic inflammatory diseases.


The study presented by Professor Simona Stäger's team points to a mechanism involving the TLR7 receptor (Toll-like Receptor 7), usually activated in innate immune system cells by pathogen recognition. In the case of chronic inflammation, the cellular residues present after tissue destruction activate TLR7 in Th1 cells. Activation of TLR7 induces expression and activation of IRF-5, which in turn increases expression of DR5 (Death Receptor 5) and caspase 8, two signaling elements leading to cell death. Thus, chronic inflammation induces the death of protective CD4 T cells via the TLR7-IRF-5 cellular pathway.

The article "IRF-5 promotes cell death in CD4 T cells during chronic infection (DOI: 10.1016/j.celrep.2018.06.107) will be published on July 31, 2018, in Cell Reports. The authors, Aymeric Fabié (doctoral student at Dr. Stäger's lab), Linh Thy Mai (master's student at Dr. Stäger's lab), Xavier Dagenais-Lussier (doctoral student at Julien van Grevenynghe's lab), Akil Hammami (doctoral student at Dr. Stäger's lab), Julien van Grevenynghe, and Simona Stäger, all at Institut national de la recherche scientifique (INRS), received financial support from the Canadian Institutes of Health Research and the Banting Research Foundation.


Institut national de la recherche scientifique (INRS) is the only institution in Québec dedicated exclusively to graduate-level university research and training. The influence of our faculty and students extends around the world. In partnership with the community and with industry, we are proud to contribute to the development of society through our discoveries and through the training we provide to a new generation of scientific, social, and technological innovators.

Source: Stéphanie Thibault, Communications Advisor, INRS. / +1 514-499-6612

Contact author: Professor Simona Stäger, INRS-Institut Armand-Frappier, / +1 450-687-5010 poste 4403

Institut national de la recherche scientifique - INRS

Related Immune System Articles:

Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
How the immune system protects us against bowel cancer
Researchers from Charité - Universitätsmedizin Berlin have discovered a protective mechanism which is used by the body to protect intestinal stem cells from turning cancerous.
How herpesviruses shape the immune system
DZIF scientists at the Helmholtz Zentrum München have developed an analytic method that can very precisely detect viral infections using immune responses.
The immune system's fountain of youth
Helping the immune system clear away old cells in aging mice helped restore youthful characteristics.
More Immune System News and Immune System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.