Nav: Home

The competitive edge: Dietary competition played a key role in the evolution of early primates

July 31, 2018

Since Darwin first laid out the basic principles of evolution by means of natural selection, the role of competition for food as a driving force in shaping and shifting a species' biology to outcompete its adversaries has played center stage. So important is the notion of competition between species, that it is viewed as a key selective force that resulted in the split of the lineage leading to modern humans from that of our early ape ancestors.

The earliest true primates, called "euprimates," lived about 55 million years ago across what is now North America. Two major fossil euprimate groups existed at this time: the lemur-like adapids and the tarsier-like omomyids. Dietary competition with other similarly adapted mammals was presumably equally critical in the origin and diversification of these two groups. Though it's been hinted at, the exact role of dietary competition and overlapping food resources in early adapid and omomyid evolution has never been directly tested.

New research published online today in the Proceedings of the Royal Society B -Biological Sciences led by Laura K. Stroik, an assistant professor of biomedical sciences at Grand Valley State University, and Gary T. Schwartz, associate professor and research scientist at Arizona State University's Institute of Human Origins, confirms the critical role that dietary adaptations played in the survival and diversification of North American euprimates.

"Understanding how complex food webs are structured and the intensity of competition over shared food resources is difficult enough to probe in living communities, let alone for communities that shared the same landscape nearly 55 million years ago," said Stroik.

The researchers utilized the latest in digital imaging and microCT scanning on more than 350 fossil mammal teeth from geological deposits in North America. They sought to quantify the 3D surface anatomy of molars belonging to extinct representatives of rodents, marsupials, and insectivores - all of which were found within the same geological deposits as the euprimates and were thus likely real competitors.

The high-resolution scans allowed them to capture and quantify details of how sharp, cresty, or pointy the teeth were. In particular, they looked at molars, or the teeth at the back of the mouth, useful in pulverizing and crushing food or prey. The relative degree of molar sharpness is directly linked to the broad menu of dietary items consumed by each species.

Stroik and Schwartz used these aspects of molar anatomy to compute patterns of dietary overlap across some key fossil groups through time. These results were then weighed against predictions from three models of how species compete with one another drawn from the world of theoretical ecology. The signal was clear: lineages belonging to the adapids largely survived and diversified without facing competition for food. The second major group, the omomyids, had to sustain periods of intensive competition with at least one contemporaneous mammal group. As omomyids persisted into more recent geological deposits, it is clear that they evolved adaptive solutions that provided them with the ability to compete and were usually victorious.

"The results showed adapids and omomyids faced different competitive scenarios when they originated in North America," said Stroik.

"Part of what makes our story unique is that for the first time we compared these fossil euprimates to a range of potential competitors from across a diverse group of mammals living right alongside adapids and omomyids, not just to other euprimates," said Schwartz. "Doing so allowed us to reconstruct a far greater swath of the ecological landscape for these important early primate relatives than has ever been attempted previously."

The key advance of this new research is the demonstration that diet did in fact play a fundamental role in the establishment, and continued success, of euprimates within the North American mammalian paleocommunity. An exciting outcome is the development of a new quantitative toolkit to diagnose patterns of dietary competition in past communities. This will now allow them to explore the role that diet and competition played in how some of these fossil euprimates continued to evolve and diversify to give rise to living lemurs and all other higher primates.
-end-


Grand Valley State University

Related Evolution Articles:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.