Nav: Home

Red-blood-cell 'hitchhikers' offer new way to transport drugs to specific targets

July 31, 2018

PHILADELPHIA - A new drug-delivery technology which uses red blood cells (RBCs) to shuttle nano-scale drug carriers, called RBC-hitchhiking (RH), has been found in animal models to dramatically increase the concentration of drugs ferried precisely to selected organs, according to a study published in Nature Communications this month by researchers from the Perelman School of Medicine at the University of Pennsylvania. This proof-of-principle study points to ways to improve drug delivery for some of the nation's biggest killers, such as acute lung disease, stroke, and heart attack.

"The vast majority of drugs fail because they spread throughout the body, landing in nearby organs where they can cause intolerable side effects, as opposed to directly targeting the areas that are really in need," said first author Jake Brenner, MD, PhD, an assistant professor of Pulmonary Medicine and Critical Care and of Pharmacology. "By massively increasing the drug concentrations that are hitting specific tissues, the RBC hitchhikers should decrease potential side effects and improve the efficacy of drugs delivered to target organs."

The team showed that RH can safely transport nano-scale carriers of drugs to chosen organs by targeted placement of intravascular catheters, in mice, pigs, and in ex vivo human lungs, without causing RBC or organ toxicities.

"Red blood cells are a particularly attractive carrier due to their biocompatibility and known safety in transfusions," said senior author Vladimir Muzykantov, MD, PhD, a professor of Systems Pharmacology and Translational Therapeutics. "In just a few short years since we began this work, we are now on the brink of mapping out ways to test it in clinical trials."

The researchers found that RH drug carriers injected intravenously increased drug uptake by about 40-fold in the lungs compared to absorption of freely circulating drug carriers in blood. In addition, injecting the RH drug carriers into the carotid artery (a major blood vessel in the neck that delivers blood to the brain, neck, and face) delivers 10 percent of the injected dose to the brain, which is about 10 times higher than what is achieved through older methods such using antibodies to guide drugs to their intended targets. Such impressive drug delivery to the brain could be used to treat acute strokes, the fourth leading cause of death in the U.S.

Development of RH technology has also revealed a potentially fundamental process that hold enormous clinical promise. "The body's largest surface area of cell-to-cell interaction is observed between red blood cells and blood vessel linings, so it is intriguing to think that our RH technology has uncovered a phenomenon in which RBCs naturally transport cargo on their surfaces," said Muzykantov.
-end-
This research was funded by the National Institutes of Health (F32 HL 129665-01, K08 HL138269-01, T32 HL07915, T32 HL007971, U01EB016027, HL087036, HL090697, HL121134).

Penn Medicine filed a U.S. patent application (15/722,583) covering this technology.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $7.8 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $405 million awarded in the 2017 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; Penn Wissahickon Hospice; and Pennsylvania Hospital - the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine, and Princeton House Behavioral Health, a leading provider of highly skilled and compassionate behavioral healthcare.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2017, Penn Medicine provided $500 million to benefit our community.

University of Pennsylvania School of Medicine

Related Brain Articles:

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
Is whole-brain radiation still best for brain metastases from small-cell lung cancer?
University of Colorado Cancer Center study compares outcomes of 5,752 small-cell lung cancer patients who received whole-brain radiation therapy (WBRT) with those of 200 patients who received stereotactic radiosurgery (SRS), finding that the median overall survival was actually longer with SRS (10.8 months with SRS versus 7.1 months with WBRT).
Atlas of brain blood vessels provides fresh clues to brain diseases
Even though diseases of the brain vasculature are some of the most common causes of death in the West, knowledge of these blood vessels is limited.
More Brain News and Brain Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab