Nav: Home

Sharing a secret...the quantum way

July 31, 2020

Researchers at the University of the Witwatersrand in Johannesburg, South Africa, have demonstrated a record setting quantum protocol for sharing a secret amongst many parties. The team created an 11-dimensional quantum state and used it to share a secret amongst 10 parties. By using quantum tricks, the secret can only be unlocked if the parties trust one another. The work sets a new record for the dimension of the state (which impacts on how big the secret can be) and the number of parties with whom it is shared and is an important step towards distributing information securely across many nodes in a quantum network.

Laser & Photonics Reviews published online the research by the Wits team led by Professor Andrew Forbes from the School of Physics at Wits University. In their paper titled: Experimental Demonstration of 11-Dimensional 10-Party Quantum Secret Sharing, the Wits team beat all prior records to share a quantum secret.

"In traditional secure quantum communication, information is sent securely from one party to another, often named Alice and Bob. In the language of networks, this would be considered peer-to-peer communication and by definition has only the two nodes: sender and receiver," says Forbes.

"Anyone who has sent an email will know that often information must be sent to several people: one sender and many receiving parties. Traditional quantum communication such as quantum key distribution (QKD) does not allow this, and is only of the peer-to-peer form."

Using structured light as quantum photon states, the Wits team showed how to distribute information from one sender to 10 parties. Then, by using some nifty quantum tricks, they could engineer the protocol so that only if the parties trust one another can the secret be revealed.

"In essence, each party has no useful information, but if they trust one another then the secret can be revealed. The level of trust can be set from just a few of the parties to all of them," says Forbes. Importantly, at no stage is the secret ever revealed through communication between the parties: they don't have to reveal any secrets. In this way a secret can be shared in a fundamentally secure manner across many nodes of a network: quantum secret sharing.

"Our work pushes the state-of-the-art and brings quantum communication closer to true network implementation," says Forbes. "When you think of networks you think of many connections, many parties, who wish to share information and not just two. Now we know how to do this the quantum way."

The team used structured photons to reach high dimensions. Structured light means ''Patterns of light" and here the team could use many patterns to push the dimension limit. More dimensions mean more information in the light, and translates directly to larger secrets.
-end-
The work was performed by students Jonathan Pinnell, Isaac Nape and Michael de Oliveira, and post-doctoral fellow Najmeh Tabebordbar.

Further Information:

Paper Abstract:


Quantum secret sharing is the art of securely sharing information between more than two people in such a way that its reconstruction requires the collaboration of a certain number of parties. Here, by taking advantage of the high?dimensional Hilbert space for orbital angular momentum and using Perfect Vortex beams as their carriers, a proof?of?principle implementation of a high?dimensional quantum secret sharing scheme is presented. This scheme is experimentally implemented with a fidelity of 93.4%, for 10 participants in ?=11 dimensions--the highest number of participants and dimensions to date. The implementation can easily be scaled to higher dimensions and any number of participants, opening the way for securely distributing information across a network of nodes.

University of the Witwatersrand

Related Quantum Articles:

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.
USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.
A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.
A quantum of solid
Researchers in Austria use lasers to levitate and cool a glass nanoparticle into the quantum regime.
What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.
Quantum physics: On the way to quantum networks
Physicists at Ludwig-Maximilians-Universitaet (LMU) in Munich, together with colleagues at Saarland University, have successfully demonstrated the transport of an entangled state between an atom and a photon via an optic fiber over a distance of up to 20 km -- thus setting a new record.
How we learn is a quantum-like manner!
It brings people new perspectives on understanding how human brains run.
How sensitive can a quantum detector be?
Measuring the energy of quantum states requires detecting energy changes so exceptionally small they are hard to pick out from background fluctuations, like using only a thermometer to try and work out if someone has blown out a candle in the room you're in.
Spinning quantum dots
A new paper in EPJ B presents a theoretical analysis of electron spins in moving semiconductor quantum dots, showing how these can be controlled by electric fields in a way that suggests they may be usable as information storage and processing components of quantum computers.
In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.
More Quantum News and Quantum Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.