Nav: Home

Insight on novel genetic approaches to metabolic liver diseases

July 31, 2020

DETROIT - Diabetes, obesity and nonalcoholic fatty liver disease (NAFLD) are all common diseases that can lead to serious health implications. NAFLD affects over 30% of Americans, and is characterized as a fatty liver, which can progress to an inflammatory and fibrotic liver, called nonalcoholic steatohepatitis (NASH), as well as liver cirrhosis.

The molecular causes of NAFLD and NASH are still not fully understood and, to date, no FDA-approved drug is available for NAFLD. A major hurdle for scientists is understanding the causal relationships between NAFLD, diabetes and obesity, which are often presented together in patients and treated as comorbidities. Without a clear understanding of their causal relationship and root cause, drug development may fail.

Faculty from Wayne State University's Eugene Applebaum College of Pharmacy and Health Sciences are leading a team of researchers to understand the causal relationships between these three diseases in hopes of developing a treatment.

Wanqing Liu, Ph.D., associate professor of pharmaceutical sciences at Wayne State, along with his collaborators from the University of Michigan, Eugene Y. Chen, Ph.D. and Cristen Willer, Ph.D., recently published the paper, "Causal relationships between NAFLD, T2D and obesity have implications for disease subphenotyping," in the Journal of Hepatology that attempts to understand the molecular causes of NAFLD. The team conducted a large-scale genomic analysis called Mendelian randomization, a strategy similar to a randomized clinical trial that relies on a naturally occurred randomization of genetic alleles in human populations.

"We used genomic data of over 400,000 individuals obtained from a biobank in the United Kingdom, in which more than 500,000 residents have been sequenced for their genome and shared their health data," said Liu. "We also leveraged genomic data of nearly 900,000 individuals that are a part of an international consortium researching diabetes and obesity. This largest-to-date data analysis allows us for the first time to determine the causal relationship between NAFLD and type-2 diabetes (T2D), as well as between NAFLD and obesity."

The team discovered that NAFLD can be separated into at least two subtypes, those mainly caused by "nature" (genetics) and those caused by "nurture" (metabolic syndrome such as T2D or obesity as a primary cause). Genetically driven NAFLD can promote the development of an atypical type of diabetes that is characterized by hyperglycemia, but not necessarily insulin resistance. Surprisingly, NAFLD does not lead to overall obesity, but rather promotes the development of central obesity. This NAFLD subtype is also characterized by a lower blood level of cholesterol.

In the "nurture" model, both T2D and obesity or central obesity can lead to the development of NAFLD. In this case, NAFLD may be secondary to T2D or obesity. To further verify these findings, Liu and his team developed a genetically engineered mouse model with a human mutation created in the patatin like phospholipase domain containing 3 (PNPLA3) gene, a known genetic cause for NAFLD in humans. Working with this model along with a team from Charlie Dong Ph.D.'s lab at the Indiana University School of Medicine, the researchers confirmed findings discovered in human genomic data.

"This study has important implications for disease classification, diagnosis and drug development," said Liu. "Further, it highlighted the importance of the development of precision medicine for both prevention and treatment of these diseases. For example, the study indicated that individuals having a high genetic risk for NAFLD may appear to be 'healthy' given that they tend to be lean, less resistant to insulin, and have low or regular blood cholesterol levels. However, they are likely underdiagnosed for NAFLD, leading to a higher risk of disease progression in these individuals. For the patients who have this disease subtype, drug development should be focused on targeting the genetic causes in the liver. On the other hand, people having a high genetic risk for diabetes and obesity who also develop NAFLD are likely to benefit from reducing their weight and controlling blood glucose."

The team also found that NAFLD caused by the PNPLA3 gene mutation may actually develop a late-onset type 1 diabetes rather than the typical T2D characterized by insulin resistance. While this must be further clarified clinically in human patients, it is a reminder that many T2D patients may be misdiagnosed and their treatment should be altered accordingly.
In addition to Wanqing Liu, authors of the paper include Zhipeng Liu, Ph.D., and Yang Zhang, Ph.D., a graduate student and postdoctoral fellow of the Liu lab, respectively; and Sarah Graham, Ph.D., a postdoctoral fellow of Willer's group. Other coauthors include Drs. Xiaokun Wang (postdoctoral fellow of the Liu lab), Defeng Cai (visiting scholar of the Liu lab), Menghao Huang (postdoctoral fellow of the Dong lab), as well as Roger Pique-Regi, Ph.D., associate professor of the Center of Molecular and Medical Genetics at Wayne State.

This research was supported by a grant to Wayne State University from the National Institutes of Health (He), start-up funding from Wayne State's Office of the Vice President for Research, and additional NIH funding to Indiana University from the National Institutes of Health (R21AA024550, R01DK091592, R56DK091592), Indiana Diabetes Research Center (P30DK097512), and the Indiana Clinical and Translational Sciences Institute (UL1TR002529.).

Wayne State University is one of the nation's pre-eminent public research institutions in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, the state of Michigan and throughout the world. For more information about research at Wayne State University, visit

Wayne State University - Office of the Vice President for Research

Related Diabetes Articles:

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.
Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.
Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).
Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.
People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.
Diabetes, but not diabetes drug, linked to poor pregnancy outcomes
New research indicates that pregnant women with pre-gestational diabetes who take metformin are at a higher risk for adverse pregnancy outcomes -- such as major birth defects and pregnancy loss -- than the general population, but their increased risk is not due to metformin but diabetes.
New oral diabetes drug shows promise in phase 3 trial for patients with type 1 diabetes
A University of Colorado Anschutz Medical Campus study finds sotagliflozin helps control glucose and reduces the need for insulin in patients with type 1 diabetes.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
More Diabetes News and Diabetes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at