Nav: Home

To distinguish contexts, animals think probabilistically, study suggests

July 31, 2020

Among the many things rodents have taught neuroscientists is that in a region called the hippocampus, the brain creates a new map for every unique spatial context - for instance, a different room or maze. But scientists have so far struggled to learn how animals decides when a context is novel enough to merit creating, or at least revising, these mental maps. In a study in eLife, MIT and Harvard researchers propose a new understanding: The process of "remapping" can be mathematically modeled as a feat of probabilistic reasoning by the rodents.

The approach offers scientists a new way to interpret many experiments that depend on measuring remapping to investigate learning and memory. Remapping is integral to that pursuit, because animals (and people) associate learning closely with context, and hippocampal maps indicate which context an animal believes itself to be in.

"People have previously asked 'What changes in the environment cause the hippocampus to create a new map?' but there haven't been any clear answers," said lead author Honi Sanders. "It depends on all sorts of factors, which means that how the animals define context has been shrouded in mystery."

Sanders is a postdoc in the lab of co-author Matthew Wilson, Sherman Fairchild Professor in The Picower Institute for Learning and Memory and the departments of Biology and Brain and Cognitive Sciences at MIT. He is also a member of the Center for Brains, Minds and Machines. The pair collaborated with Samuel Gershman, a professor of psychology at Harvard on the study.

Fundamentally a problem with remapping that has frequently led labs to report conflicting, confusing, or surprising results, is that scientists cannot simply assure their rats that they have moved from experimental Context A to Context B, or that they are still in Context A, even if some ambient condition, like temperature or odor, has inadvertently changed. It is up to the rat to explore and infer that conditions like the maze shape, or smell, or lighting, or the position of obstacles, and rewards, or the task they must perform, have or have not changed enough to trigger a full or partial remapping.

So rather than trying to understand remapping measurements based on what the experimental design is supposed to induce, Sanders, Wilson and Gershman argue that scientists should predict remapping by mathematically accounting for the rat's reasoning using Bayesian statistics, which quantify the process of starting with an uncertain assumption and then updating it as new information emerges.

"You never experience exactly the same situation twice. The second time is always slightly different," Sanders said. "You need to answer the question: 'Is this difference just the result of normal variation in this context or is this difference actually a different context?' The first time you experience the difference you can't be sure, but after you've experienced the context many times and get a sense of what variation is normal and what variation is not, you can pick up immediately when something is out of line."

The trio call their approach "hidden state inference" because to the animal, the possible change of context is a hidden state that must be inferred.

In the study the authors describe several cases in which hidden state inference can help explain the remapping, or the lack of it, observed in prior studies.

For instance, in many studies it's been difficult to predict how changing some of cues that a rodent navigates by in a maze (e.g. a light or a buzzer) will influence whether it makes a completely new map or partially remaps the current one and by how much. Mostly the data has showed there isn't an obvious "one-to-one" relationship of cue change and remapping. But the new model predicts how as more cues change, a rodent can transition from becoming uncertain about whether an environment is novel (and therefore partially remapping) to becoming sure enough of that to fully remap.

In another, the model offers a new prediction to resolve a remapping ambiguity that has arisen when scientists have incrementally "morphed" the shape of rodent enclosures. Multiple labs, for instance, found different results when they familiarized rats with square and round environments and then tried to measure how and whether they remap when placed in intermediate shapes, such as an octagon. Some labs saw complete remapping while others observed only partial remapping. The new model predicts how that could be true: rats exposed to the intermediate environment after longer training would be more likely to fully remap than those exposed to the intermediate shape earlier in training, because with more experience they would be more sure of their original environments and therefore more certain that the intermediate one was a real change.

The math of the model even includes a variable that can account for differences between individual animals. Sanders is looking at whether rethinking old results in this way could allow researchers to understand why different rodents respond so variably to similar experiments.

Ultimately, Sanders said, he hopes the study will help fellow remapping researchers adopt a new way of thinking about surprising results - by considering the challenge their experiments pose to their subjects.

"Animals are not given direct access to context identities, but have to infer them," he said. "Probabilistic approaches capture the way that uncertainty plays a role when inference occurs. If we correctly characterize the problem the animal is facing, we can make sense of differing results in different situations because the differences should stem from a common cause: the way that hidden state inference works."
The National Science Foundation funded the research.

Picower Institute at MIT

Related Environment Articles:

How do we disconnect from the environment during sleep and under anesthesia?
A series of new studies by researchers at Tel Aviv University's Sackler Faculty of Medicine and Sagol School of Neuroscience finds, among other important discoveries, that noradrenaline, a neurotransmitter secreted in response to stress, lies at the heart of our ability to ''shut off'' our sensory responses and sleep soundly.
Our pupil moves to the rhythm of the environment
Regular processes in the environment improve our eyesight.
New self-forming membrane to protect our environment
A new class of self-forming membrane has been developed by researchers from Newcastle University, UK.
How atrazine regulations have influenced the environment
Opposing chemical trends linked to atrazine regulations from 1990s.
COVID-19 and the built environment
Social distancing has Americans mostly out of the places they usually gather and in their homes as we try to reduce the spread of COVID-19.
A broad look at plant-environment interactions
Three plant science journals---the American Journal of Botany (AJB), Applications in Plant Sciences (APPS), and the International Journal of Plant Sciences (IJPS)---have joined efforts to provide a broad look at how plants interact with their environment.
Observing proteins in their natural environment
Certain medications, such as those used to treat cancer, lose their effect because proteins in the membrane of the target cell simply expel them again.
New research looks at type 1 diabetes and changes in the environment
Studies have shown a rapid increase in new cases of type 1 diabetes worldwide.
Chemicals in the environment: A focus on mixtures
The real world is marked by multiple stressors, among them cocktails of chemicals.
Rubber in the environment
The tread on the tyre is worn out, new tyres are needed.
More Environment News and Environment Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at