Cometary Impact With Earth Unlikely In The Next 500,000 Years

July 31, 1998

COLUMBUS, Ohio -- Contrary to Hollywood's latest predictions, it is highly unlikely that a comet will rain death and destruction on the earth during the next half-millionyears, according to a new study.

Two Ohio State University astronomers reported in Astrophysical Journal Letters that a new review of the motions of thousands of nearby stars failed to show any rogue stars capable of pulling comets out of their orbits andinto the earth's path.

Jay Frogel and Andrew Gould, professor and associate professor of astronomy at Ohio State, were looking for evidence of the so-called "death star" scenario where a passing star might alter the current orbits of cometsnear our solar system and send them our way.

There is ample evidence both on earth and on other planets, they say, that shows comets and asteroids have impacted with devastating results. Two new movies -- "Deep Impact" and "Armageddon" -- depend on this premise for their drama. Frogel's interest, however, was spurred by geological evidence of such past impacts, he says, and not by the new movies.

He and Gould turned to a relatively new resource to conduct their search -- the HIPPARCOS catalogue. In 1989, the European Space Agency launched the HIPPARCOS satellite with its mission to accurately measure the location and motion of more than 120,000 stars.

Astronomers believe a massive cloud of comets -- the Oort Cloud -- lies as much as 100,000 AUs out from the sun, surrounding our solar system. (An AU is the distance between the earth and the sun -- approximately 93 million miles.) If a star passed through that cloud, its gravitational fieldmight nudge a comet out of orbit and towards the earth.

Frogel and Gould looked in the HIPPARCOS Catalogue specifically for stars with near zero proper motion -- stars that were either coming directly in our direction, or moving directly away. Any star that had already passed would appear to be moving directly away.

"For all intents and purposes, you should just see a star that appeared not to be moving at all," Gould said. The one potential candidate the researchers did find turned out to be a star previously identified by other scientists. They failed also to find evidence of stars that may have already passed nearby. Gould's analysis of the HIPPARCOS catalogue showed that it should be sensitive enough to detect zero proper motion of any stars brighter than 8th magnitude. Eighth magnitudestars appear about 25 times fainter than those visible to the naked eye.

Gould said that these bright stars are important candidates for the death star scenario. "They're bright either because they are close by or because of their size," he said. The larger the star, the greater it's gravitational effect might be on nearby comets.

"We showed that theoretically, about 96 percent of the possible damaging events (the passing of such stars) should show up in the HIPPARCOS catalogue," Gould said. They had defined a "damaging event" as a star passing within 20,000 AUs of the sun.

Frogel and Gould are cautious with their predictions -- "We can't guarantee that a comet won't hit the earth nextyear." Their analysis of the catalogue, however, makes it "unlikely that a major (comet) shower will occur in the next half-million years."

Gould said, "The chance that a big enough star to cause significant damage would go through (our region) in thenext 10 million years is extremely small."

Frogel said he and Gould are confident about their analysis of the HIPPARCOS catalogue. The next step would be to seek a "death star" candidate among stars that were too faint to be included in HIPPARCOS.

Another satellite -- GAIA -- has been proposed by ESA which would measure the motions of 50 million objects, including stars as faint as 15th magnitude. If approved, GAIA would be launched no sooner than the year 2009.

Some support for this research came from the National Science Foundation.
Andrew Gould, (614) 292-1892;
Written by Earle Holland, (614) 292-8384;

Ohio State University

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to