Nobel Prize winner's unfinished symphony

August 01, 2011

Amsterdam, 1 August 2011 - When Robert Burns Woodward passed away in 1979 he left 699 pages of handwritten notes. Because R.B. Woodward was a Nobel Laureate (Chemistry, 1965) his family had carefully preserved his notes for posterity. A paper published in Elsevier's Tetrahedron summarizes the process of an extensive study uncovering the hidden treasures in these notes.

The notes were meticulously drawn sketches outlining Woodward's ideas on organic superconductors. Woodward's family felt these notes could provide valuable insights to other chemists. With the help of Prof Robert Williams from the Colorado State University, two suitable researchers - Michael P. Cava and M.V. Lakshmikantham from the University of Alabama - were appointed to study these notes extensively. The result of this long study is presented in the paper to be published in Tetrahedron, including original scans of Woodward's work. Chemical Engineering and News, a weekly journal of the American Chemical Society, describes in more detail the work that went into producing this paper (Volume 89, number 22, pp.46-49).

Cava and Lakshmikantham had no easy task. Although the family had numbered the pages and later digitally scanned them, the notes were written on various types of paper and at various times as the ideas occurred. Cava and Lakshmikantham took some of the main compounds from Woodward's notes, redrawing them using modern techniques, also searching for any later available literature on the same compounds.

A superconductor allows electricity to flow without resistance. Although the first superconductor had been described in 1911, Woodward developed his ideas when superconductors were still at an experimental stage and the only superconductors known operated at very low temperatures, meaning their practical use was limited. Woodward felt confident he could develop an organic superconductor which would operate at room temperature: his notes set out his ideas for suitable compounds.
-end-
This paper (Cava, M.P., et al., Tetrahedron Vol 67, issue 36 (2011), doi:10.1016/j.tet.2011.05.004), is a worthy reminder of Robert Burns Woodward's standing within both his family and the scientific community.

About Tetrahedron

Tetrahedron publishes experimental and theoretical research results of outstanding significance and timeliness in the field of organic chemistry and its application to related disciplines especially bio-organic chemistry. Areas covered by the journal include the many facets of organic synthesis, organic reactions, natural products chemistry, studies of reaction mechanism and various aspects of spectroscopy. Contributions take the form of full papers, which are major original contributions to the literature. It is one of a family of highly respected journals which include the Bioorganic and Medicinal Chemistry and Bioorganic and Medicinal Chemistry Letters.

About Elsevier

Elsevier is a world-leading provider of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet and Cell, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include SciVerse ScienceDirect, SciVerse Scopus, Reaxys, MD Consult and Nursing Consult, which enhance the productivity of science and health professionals, and the SciVal suite and MEDai's Pinpoint Review, which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world-leading publisher and information provider, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Elsevier

Related Superconductors Articles from Brightsurf:

Progress in electronic structure and topology in nickelates superconductors
Recently, superconductivity was discovered in the hole-doped nickelates, wh ich provide us a new platform to study the mechanism of high-temperature superconductivity.

UCF researcher zeroes in on critical point for improving superconductors
Developing a practical ''room temperature'' superconductor is a feat science has yet to achieve.

Connecting two classes of unconventional superconductors
The understanding of unconventional superconductivity is one of the most challenging and fascinating tasks of solid-state physics.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

New advance in superconductors with 'twist' in rhombohedral graphite
An international research team led by The University of Manchester has revealed a nanomaterial that mirrors the 'magic angle' effect originally found in a complex man-made structure known as twisted bilayer graphene -- a key area of study in physics in recent years.

A new way towards super-fast motion of vortices in superconductors discovered
An international team of scientists from Austria, Germany and Ukraine has found a new superconducting system in which magnetic flux quanta can move at velocities of 10-15 km/s.

Controlling superconductors with light
IBS scientists has reported a conceptually new method to study the properties of superconductors using optical tools.

Superconductors with 'zeitgeist' -- When materials differentiate between past and future
Physicists at TU Dresden have discovered spontaneous static magnetic fields with broken time-reversal symmetry in a class of iron-based superconductors.

Hydrogen blamed for interfering with nickelate superconductors synthesis
Prof. ZHONG Zhicheng's team at the Ningbo Institute of Materials Technology and Engineering has investigated the electronic structure of the recently discovered nickelate superconductors NdNiO2. They successfully explained the experimental difficulties in synthesizing superconducting nickelates, in cooperation with Prof.

A closer look at superconductors
From sustainable energy to quantum computers: high-temperature superconductors have the potential to revolutionize today's technologies.

Read More: Superconductors News and Superconductors Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.