Mechanism of sculpting the plasma membrane of intestinal cells identified

August 01, 2011

The research group of Professor Pekka Lappalainen at the Institute of Biotechnology, University of Helsinki, has identified a previously unknown mechanism which modifies the structure of plasma membranes in intestinal epithelial cells. Unlike other proteins with a similar function, the new protein - named 'Pinkbar' by the researchers - creates planar membrane sheets. Further research investigates the potential connection of this protein with various intestinal disorders. The study was published in the prestigious Nature Structural & Molecular Biology journal.

A dynamic plasma membrane surrounds all eukaryotic cells. Membrane plasticity is essential for a number of cellular processes; changes in the structure of the plasma membrane enable cell migration, cell division, intake of nutrients and many neurobiological and immunological events.

Earlier research has shown that certain membrane-binding proteins can 'sculpt' the membrane to generate tubular structures with positive or negative curvature, and consequently induce the formation of protrusions or invaginations on the surface of the cell. These membrane-sculpting proteins are involved in various vital cellular processes and can control the shape of the plasma membrane with surprising precision. Many of them have also been linked to severe diseases such as cancer and neurological syndromes.

Identified by Anette Pykäläinen, a member of Professor Lappalainen's group who is currently finalising her dissertation, the new membrane sculpting protein has a different mechanism than other proteins studied previously. Instead of generating positive and negative curvature, the Pinkbar protein is able to produce planar membrane sheets. Lappalainen's group determined the membrane-sculpting mechanism of Pinkbar in collaboration with an American research group. In humans, Pinkbar is only found in intestinal epithelial cells where it may be involved in the regulation of intestinal permeability. In the future, it will be important to identify the exact physiological function of Pinkbar in intestinal epithelial cells and to study the possible links of this protein to various intestinal disorders.
-end-


University of Helsinki

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.