New silicon structures could make better biointerfaces

August 01, 2016

A team of researchers from the University of Chicago, Northwestern University, the University of Illinois at Chicago and the U.S. Department of Energy's (DOE) Argonne National Laboratory have engineered silicon particles one-fiftieth the width of a human hair, which could lead to "biointerface" systems designed to make nerve cells fire and heart cells beat.

Bozhi Tian, who led one of the University of Chicago research groups, said the particles can establish unique biointerfaces on cell membranes, because they are deformable but can still yield a local electrical effect.

"Biological systems are soft, and if you want to design a device that can target those tissues or organs, you should match their mechanical interface as well," Tian said. "Most of the current implants are rigid, and that's one of the reasons they can cause inflammation."

Over time biointerfaces made out of these particles will also degrade, unlike alternative materials like gold and carbon, said study co-author Yuanwen Jiang, a graduate student in the Tian group. This means that for future applications patients wouldn't have to undergo a second procedure to have the particles removed.

Jiang and Tian said they believe the material has many potential applications in biomedicine, because the particles and light can be used to excite many types of cells.

The mesostructured silicon, named for its complex internal structures of nanoscopic wires, was created using a process called nano-casting.

To make the particles, each between one and five micrometers in size, researchers filled the beehive structure of synthetic silicon dioxide with semiconductive silicon the same way a blacksmith would pour molten metal into a cast iron mold. The outer mold was then etched away with acid, leaving behind a bundle of wires connected by thin bridges.

In order to test whether the particles could change the behavior of cells, the team injected a sample onto cultured rat dorsal root ganglia neurons, which are found in the peripheral nervous system.

The team was able to activate the neurons using pulses of light to heat up the silicon particles, causing current to flow through the cells.

In conventional biointerfaces, materials must be hooked up to a source of energy, but because researchers need only apply light to use the silicon particles, the new system is entirely wireless. Researchers can simply inject the particles in the right area and activate them through the skin.

"Neuromodulation could take full advantage of this material, including its optical, mechanical and thermal properties," Jiang said.

Along with the implications that controlling neurons might have with neurodegenerative disorders, researchers in Tian's lab have used similar materials to control the beating of heart cells, he said.

The paper's authors used resources from the Argonne X-ray Science and Chemical Sciences and Engineering Divisions and the Center for Nanoscale Materials, a DOE Office of Science User Facility.

Researchers used the 12-ID-B and 32-ID beamlines at the Advanced Photon Source, also a DOE Office of Science User Facility, to take X-ray scattering measurements, as well as transmission X-ray microscopy nano-computed tomography of the samples, scanning electron microscopy and transmission electron microscopy. The Center for Nanoscale Materials provided focused ion beam lithography instrument and expertise as well as tools for fabrication of the optical masks.

The paper was published online by Nature Materials on June 27, under the title "Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces." Argonne co-authors included Il Woong Jung, Di-Jia Liu, Xiaobing Zuo, Vincent De Andrade and Xianghui Xiao.
This work was funded by the Air Force Office of Scientific Research, the National Science Foundation, the Searle Scholars Foundation, the National Institutes of Health and the University of Chicago Start-up Fund.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

DOE/Argonne National Laboratory

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to