Nav: Home

New silicon structures could make better biointerfaces

August 01, 2016

A team of researchers from the University of Chicago, Northwestern University, the University of Illinois at Chicago and the U.S. Department of Energy's (DOE) Argonne National Laboratory have engineered silicon particles one-fiftieth the width of a human hair, which could lead to "biointerface" systems designed to make nerve cells fire and heart cells beat.

Bozhi Tian, who led one of the University of Chicago research groups, said the particles can establish unique biointerfaces on cell membranes, because they are deformable but can still yield a local electrical effect.

"Biological systems are soft, and if you want to design a device that can target those tissues or organs, you should match their mechanical interface as well," Tian said. "Most of the current implants are rigid, and that's one of the reasons they can cause inflammation."

Over time biointerfaces made out of these particles will also degrade, unlike alternative materials like gold and carbon, said study co-author Yuanwen Jiang, a graduate student in the Tian group. This means that for future applications patients wouldn't have to undergo a second procedure to have the particles removed.

Jiang and Tian said they believe the material has many potential applications in biomedicine, because the particles and light can be used to excite many types of cells.

The mesostructured silicon, named for its complex internal structures of nanoscopic wires, was created using a process called nano-casting.

To make the particles, each between one and five micrometers in size, researchers filled the beehive structure of synthetic silicon dioxide with semiconductive silicon the same way a blacksmith would pour molten metal into a cast iron mold. The outer mold was then etched away with acid, leaving behind a bundle of wires connected by thin bridges.

In order to test whether the particles could change the behavior of cells, the team injected a sample onto cultured rat dorsal root ganglia neurons, which are found in the peripheral nervous system.

The team was able to activate the neurons using pulses of light to heat up the silicon particles, causing current to flow through the cells.

In conventional biointerfaces, materials must be hooked up to a source of energy, but because researchers need only apply light to use the silicon particles, the new system is entirely wireless. Researchers can simply inject the particles in the right area and activate them through the skin.

"Neuromodulation could take full advantage of this material, including its optical, mechanical and thermal properties," Jiang said.

Along with the implications that controlling neurons might have with neurodegenerative disorders, researchers in Tian's lab have used similar materials to control the beating of heart cells, he said.

The paper's authors used resources from the Argonne X-ray Science and Chemical Sciences and Engineering Divisions and the Center for Nanoscale Materials, a DOE Office of Science User Facility.

Researchers used the 12-ID-B and 32-ID beamlines at the Advanced Photon Source, also a DOE Office of Science User Facility, to take X-ray scattering measurements, as well as transmission X-ray microscopy nano-computed tomography of the samples, scanning electron microscopy and transmission electron microscopy. The Center for Nanoscale Materials provided focused ion beam lithography instrument and expertise as well as tools for fabrication of the optical masks.

The paper was published online by Nature Materials on June 27, under the title "Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces." Argonne co-authors included Il Woong Jung, Di-Jia Liu, Xiaobing Zuo, Vincent De Andrade and Xianghui Xiao.
-end-
This work was funded by the Air Force Office of Scientific Research, the National Science Foundation, the Searle Scholars Foundation, the National Institutes of Health and the University of Chicago Start-up Fund.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

DOE/Argonne National Laboratory

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.