Nav: Home

CO2 rise makes night fall

August 01, 2016

Much of the excess carbon dioxide (CO2) in our atmosphere, released from burning fossil fuels, is taken up by the oceans. Yet the dissolved CO2 increases the acidity of the water, with inevitable impacts on fragile marine ecosystems such as coral reefs. Researchers at KAUST are conducting genomic experiments on generations of reef fish to determine how they might adapt to rapidly changing conditions1.

Fish rely on certain behaviors to avoid predation and ensure their populations are replenished. Scientists have noticed that, under higher CO2 conditions, young fish lose the ability to respond to cues from other fish, leaving them vulnerable to predation. Such behavioral changes are detrimental to the fish population; if they are to survive in altered environments then they need to be able to adapt.

Tracking changes in the genome in subsequent generations provides insights into how such adaptations occur. Timothy Ravasi, his postdoc Celia Schunter and co-workers from the Biological and Environmental Science and Engineering Division analyzed genetic data from parent and juvenile damselfish (Acanthochromis polyacanthus) to see how the fish reacted to ocean acidification.

"We developed a unique fish-rearing experiment that allowed us to measure the effects of ocean acidification across generations," says Ravasi. "By combining data from the genome with information about RNA and protein expression, we were able to uncover the transgenerational molecular responses of the fish's brains."

After rearing wild-type damselfish in captivity, the team separated adult fish into two groups; those that were naturally tolerant of high CO2, and those that were sensitive to it. Their offspring were raised in the same CO2 conditions as their parents--either at current pH levels or at near-future levels with higher CO2.

The immense amount of sequencing data generated in the project was unprecedented for a wild-type organism, and took the team considerable time to analyze.

The researchers found many molecular differences between the tolerant and sensitive offspring, including alterations to both genes and protein expression. Significantly, the main differences involved changes to the circadian rhythm genes in the tolerant offspring, a finding that Ravasi had not anticipated.

"In all coral reefs, CO2 levels naturally fluctuate between day and night due to coral symbiont photosynthesis," explained Ravasi "Reef fish adjust their bodies to compensate for elevated night-time CO2, and of course, this is controlled by circadian rhythm. It seems the tolerant offspring may have adjusted their circadian clocks as if it was always night!"

Ravasi's team was recently awarded a grant for expansion of their project to investigate the mechanisms behind these findings.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Coral Reefs Articles:

Actions to save coral reefs could benefit all ecosystems
Scientists say bolder actions to protect the world's coral reefs will benefit all ecosystems, human livelihoods and improve food security.
Coral reefs shifting away from equator
Coral reefs are retreating from equatorial waters and establishing new reefs in more temperate regions, according to new research in the journal Marine Ecology Progress Series.
Protecting coral reefs in a deteriorating environment
A new report examines novel approaches for saving coral reefs imperiled by climate change, and how local decision-makers can assess the risks and benefits of intervention.
Coral reefs can't return from acid trip
When put to the test, corals and coralline algae are not able to acclimatise to ocean acidification.
New eDNA technology used to quickly assess coral reefs
Scientists at the University of Hawai`i at Mānoa Department of Biology have developed a technique for measuring the amount of living coral on a reef by analyzing DNA in small samples of seawater.
More Coral Reefs News and Coral Reefs Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...