Nav: Home

Mystery solved: The case of the slipping finger

August 01, 2016

Haptics researchers have long known that applying ultrasonic vibrations to a flat, featureless glass plate makes it feel slippery. But they have also long debated why this occurs.

Northwestern University's J. Edward Colgate and his team have finally put the debate -- and mystery -- to rest. They discovered that the vibrations reduce friction by causing the fingertip to bounce on pockets of trapped air.

"Understanding this underlying reason is extremely useful," said Colgate, professor of mechanical engineering and Allen K. and Johnnie Cordell Breed Senior Professor in Design at Northwestern's McCormick School of Engineering. "This information will help us engineer more sophisticated devices that not only vary friction but do other things, such as exert forces on the finger."

Supported by the National Science Foundation, the research was published on August 1 in the Proceedings of the National Academy of Sciences. Michaël Wiertlewski, a former postdoctoral fellow in Colgate's laboratory and research scientist at Aix-Marseille Université in France, was first author of the paper. Rebecca Fenton Friesen, a PhD student in Colgate's laboratory, also contributed to the work.

A haptics technology pioneer, Colgate aims to redefine the way users interact with their touchscreens. With long-time collaborator Michael Peshkin, professor of mechanical engineering at Northwestern, Colgate and his team created the TPad phone, a standard smartphone nestled in a case that enables physical textures to be communicated through the screen. Ultrasonic vibrations in the glass modulate the friction between it and the finger, causing the screen to feel sticky, slippery, bumpy, or wavy.

The lack of understanding of the underlying mechanism that makes the screen feel slippery posed a barrier to furthering the research. Earlier studies showed that when objects, such as metal discs, were placed on a vibrating screen, they floated above it. But haptics researchers were hesitant to apply these findings to a finger.

"Fingers are different than what has been used in other studies," Colgate said. "They're not hard or rigid, and they're rough because of the fingerprint and build up of dead skin cells. We've been trying to understand this phenomenon for a number of years, but the kind of instruments we needed weren't available."

Wiertlewski overcame this hurdle by building an apparatus to image the finger as it experiences the ultrasonic vibrations. He built a novel fingerprint imager -- a high-tech cousin of the kinds used in security -- and connected it to a TPad. This allowed the research team to see through the transparent screen of the TPad to watch the finger fast enough to make measurements of the distance between the screen and finger at the time scale of the ultrasonic vibration.

"We saw the skin moving -- a lot," Colgate said. "It's vibrating with almost as much amplitude as the TPad itself, but it's happening too fast to feel it."

The finger bounces so quickly, in fact, that the air trapped between it and the screen has no time to escape. Instead, the air compresses and acts like a spring. The vibrations push the finger up into the air, and as the finger comes back down, it falls onto a cushion of air instead of the screen. The process reduces friction and emulates the feeling of slipperiness.

"We saw other types of objects floating," Colgate said. "By no means is the finger floating. It's bouncing."

Colgate believes that having this information will help his team pursue one of haptics' biggest challenges: using vibrations to push a bare finger. This effect could be used, for example, to push the fingers to align them over a keyboard, which could be useful for people who are blind, have low vision, or are in situations where they cannot use their eyes, such as when driving or in the dark. While Colgate's team has achieved this effect in the laboratory, the force has not been as strong as they would like. They know why -- the screen cannot effectively grab the fingers when the vibrations have reduced friction.

"Almost anything you do on a touchscreen could be influenced by this finding," Colgate said. "We can do more interesting things with the TPad and develop future technologies."
-end-


Northwestern University

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...