Nav: Home

FAMIN or feast? Newly discovered mechanism influences how immune cells 'eat' invaders

August 01, 2016

A new mechanism that affects how our immune cells perform - and hence their ability to prevent disease - has been discovered by an international team of researchers led by Cambridge scientists.

To date, researchers have identified hundreds of genetic variants that increase or decrease the risk of developing diseases from cancer and diabetes to tuberculosis and mental health disorders. However, for the majority of such genes, scientists do not yet know how the variants contribute to disease - indeed, scientists do not even understand how many of the genes function.

One such gene is C13orf31, found on chromosome 13. Scientists have previously shown that variants of the gene in which a single nucleotide - the A, C, G and T of DNA - differs are associated with risk for the infectious disease leprosy, and for the chronic inflammatory diseases Crohn's disease and a form of childhood arthritis known as systemic juvenile idiopathic arthritis.

In a study published today in the journal Nature Immunology and led by the University of Cambridge, researchers studied how this gene works and have identified a new mechanism that drives energy metabolism in our immune cells. Immune cells help fight infection, but in some cases attack our own bodies, causing inflammatory disease.

Using mice in which the mouse equivalent of the C13orf31 gene had been altered, the team showed that the gene produces a protein that acts as a central regulator of the core metabolic functions in a specialist immune cell known as a macrophage (Greek for 'big eater'). These cells are so named for their ability to 'eat' invading organisms, breaking them down and preventing the infection from spreading. The protein, which the researchers named FAMIN (Fatty Acid Metabolic Immune Nexus), determines how much energy is available to the macrophages.

The researchers used a gene-editing tool known as CRISPR/Cas9, which acts like a biological 'cut and paste' tool, to edit a single nucleotide in the risk genes within the mouse's genome to show that even a tiny change to our genetic makeup could have a profound effect, making the mice more susceptible to sepsis (blood poisoning). This showed that FAMIN influences the cell's ability to perform its normal function, controlling its capacity to kill bacteria and release molecules known as 'mediators' that trigger an inflammatory response, a key part of fighting infection and repairing damage in the body.

Professor Arthur Kaser from the Department of Medicine at the University of Cambridge, who led the research, says: "By taking a disease risk gene whose role was completely unknown and studying its function down to the level of a single nucleotide, we've discovered an entirely new and important mechanism that affects our immune system's ability to carry out its role as the body's defence mechanism."

Dr Zaeem Cader, the study's first author, adds: "Although it's too early to say how this discovery might influence new treatments, genetics can provide invaluable insights that might help in identifying potential drug targets for so-called precision medicines, tailored to an individual's genetic make-up."
-end-
The research was largely funded by the European Research Council and the Wellcome Trust, with support from National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre.

Reference

Cader, MZ et al. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nature Immunology; 1 Aug 2016; DOI: 10.1038/ni.3532

University of Cambridge

Related Immune Cells Articles:

Immunology: How ancestry shapes our immune cells
A genetic variant that is particularly prevalent in people of African ancestry confers protection against malaria.
Immune cells derived from specialised progenitors
Dendritic cells are gatekeepers of Immunity. Up to now dendritic cell subtypes were thought to develop from one common progenitor.
Comprehensive atlas of immune cells in renal cancer
Researchers from the University of Zurich have individually analyzed millions of immune cells in tumor samples from patients with renal cell carcinoma.
When liver immune cells turn bad
A high-fat diet and obesity turn 'hero' virus-fighting liver immune cells 'rogue,' leading to insulin resistance, a condition that often results in type 2 diabetes, according to research published today in Science Immunology.
New role for immune cells in preventing diabetes and hypertension
Immune cells which are reduced in number by obesity could be a new target to treat diseases such as type 2 diabetes and hypertension that affect overweight people, according to a collaborative study between the University of Manchester, Lund University and the University of Salford.
Why male immune cells are from Mars and female cells are from Venus
Michigan State University researchers are the first to uncover reasons why a specific type of immune cell acts very differently in females compared to males while under stress, resulting in women being more susceptible to certain diseases.
Immune therapy scientists discover distinct cells that block cancer-fighting immune cells
Princess Margaret Cancer Centre scientists have discovered a distinct cell population in tumours that inhibits the body's immune response to fight cancer.
Opioids produce analgesia via immune cells
Opioids are the most powerful painkillers. Researchers at the Charité -- Universitätsmedizin Berlin have now found that the analgesic effects of opioids are not exclusively mediated by opioid receptors in the brain, but can also be mediated via the activation of receptors in immune cells.
Oddly shaped immune cells cause fibrosis
Scientists at the Immunology Frontier Research Center (IFReC) at Osaka University, Japan, report a new group of monocytes they call SatM.
New system developed that can switch on immune cells to attack cancer cells
Researchers have developed an artificial structure that mimics the cell membrane, which can switch on immune cells to attack and destroy a designated target.

Related Immune Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".