Nav: Home

Iron catalysts can modify amino acids, peptides to create new drug candidates

August 01, 2016

CHAMPAIGN, Ill.-- For medicinal chemists, making tweaks to peptide structures is key to developing new drug candidates. Now, researchers have demonstrated that two iron-containing small-molecule catalysts can help turn certain types of amino acids -- the building blocks of peptides and proteins -- into an array of potential new forms, even when part of a larger peptide, while preserving a crucial aspect of their chemistry: chirality, or "handedness."

Led by Illinois chemistry professor M. Christina White, researchers from the University of Illinois at Urbana-Champaign in collaboration with researchers at Pfizer Global Research and Development detailed the new reactivity of the catalysts in the journal Nature.

"This allows us to take one amino acid structure and convert it into many different structures that represent different functionalities, which could ultimately lead to different biological and physical properties of the peptide," White said. "It also expands the pool of unnatural chiral amino acids that are available to researchers to make new structures."

A main advantage to the catalysts, which oxidize bonds between carbon and hydrogen, is that they preserve the amino acid's sense of chirality. Chiral molecules can have more than one spatial arrangement of their atoms, or stereochemistry, sometimes known as "right-hand" and "left-hand" versions. Although they share the same chemical formula, molecules of opposite handedness can behave very differently in the body. For example, L-DOPA is a drug used to treat Parkinson's disease, whereas its mirror version, D-DOPA, is biologically inactive.

"That's why having things with defined stereochemistry can be very important for drug discovery," White said. "It can be that a molecule of one handedness has fantastic physiological properties, but the same molecule with the opposite handedness could have very detrimental properties."

Using the two iron catalysts, the researchers were able to take four chiral amino acids - proline, leucine, valine and norvaline -- and diversify them into 21 different amino acid structures while preserving their handedness. The new structures can be used to create modified versions of existing peptides or to build entirely new structures.

Such oxidative amino acid modification is performed routinely in nature to make a variety of different peptides with different properties. Twenty common amino acids exist in nature, but are altered by carbon-hydrogen oxidation reactions to change their shape or add functional groups such as alcohols or carboxylic acids. These reactions are typically catalyzed by iron-containing enzymes. However, the enzymes are very difficult to work with in a laboratory setting, White said.

"These enzymes are also very specific. They are usually tailored to one amino acid or one peptide structure," White said. "Two big advantages to the small-molecule catalysts we've developed are that they are very general -- they can work on many different amino acid and peptide structures -- and they are very easy to use. They can create great diversity initiated by one simple carbon-hydrogen oxidation reaction."

Another major advantage the catalysts have is that, while they are general in what substrate they can oxidize, they are very specific about which carbon-hydrogen bonds they cut -- so much so that they target a certain spot on amino acids like proline, leucine or valine even when they are part of a much larger peptide chain. For example, the researchers used the catalysts to transform a single proline-containing peptide chain into eight different peptides containing unnatural amino acids.

"This is powerful because right now, if you want to make those eight different peptides, you would have to do eight different syntheses," White said. "And before you could do that, you'd have to synthesize the individual unnatural amino acid components. With our method, you can build one peptide out of bulk chemicals and use one carbon-hydrogen oxidation reaction, coupled with a reaction to add a functional group, to produce eight new peptides all with retained handedness."

One of the small-molecule iron catalysts, iron PDP, is available commercially from Sigma-Aldrich and Strem, and the researchers are in talks to make the second catalyst available as well.

White's group is working on catalysts that can modify a wider range of amino acids, particularly those with electron-rich aromatic functionality, which compete with the carbon-hydrogen bonds for oxidation using the current catalyst.
-end-
The National Institute of General Medical Sciences at the National Institutes of Health and Pfizer supported this work.

Editor's notes: To reach M. Christina White, call 217-333-6173; email mcwhite7@illinois.edu. The paper "Oxidative diversification of amino acids and peptides by small-molecule iron catalysts" is available from online at http://www.nature.com/nature/journal/vaop/ncurrent/full/nature18941.html.

University of Illinois at Urbana-Champaign

Related Amino Acids Articles:

A unique amino acid for brain cancer therapy
Researchers discover potential application of amino acid taurine in photodynamic therapy for brain cancer.
Nickel: A greener route to fatty acids
Chemists designed a nickel catalyst that easily transforms petroleum feedstocks into valuable compounds like fatty acids.
Amino acids in diet could be key to starving cancer
Cutting out certain amino acids - the building blocks of proteins -- from the diet of mice slows tumor growth and prolongs survival, according to new research published in Nature.
How to brew high-value fatty acids with brewer's yeast
Researchers at Goethe University Frankfurt have succeeded in producing fatty acids in large quantities from sugar or waste containing sugar with the help of yeasts.
Diverse natural fatty acids follow 'Golden Mean'
Bioinformatics scientists at Friedrich Schiller University in Jena (Germany) have discovered that the number of theoretically possible fatty acids with the same chain length but different structures can be determined with the aid of the famous Fibonacci sequence.
Simple fats and amino acids to explain how life began
Life is a process that originated 3.5 billion years ago.
Newly revealed amino acid function could be used to boost antioxidant levels
A Japanese research team has become the first in the world to discover that 2-aminobutyric acid is closely involved in the metabolic regulation of the antioxidant glutathione, and that it can effectively raise levels of glutathione in the body when ingested.
An amino acid controls plants' breath
IBS plant scientists demonstrate that the amino acid L-methionine activates a calcium-channel regulating the opening and closing of tiny plant pores.
Genetic differences in amino acid metabolism are linked to a higher risk of diabetes
A study published today in the journal PLOS Medicine has identified the five genetic variants associated with higher levels of the branched-chain amino acids isoleucine, leucine and valine.
Withholding amino acid depletes blood stem cells, Stanford researchers say
A new study shows that a diet deficient in valine effectively depleted the blood stem cells in mice and made it possible to perform a blood stem cell transplantation on them.

Related Amino Acids Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...