Nav: Home

Here's why the epidemic strain of C. difficile is so deadly -- and a way to stop it

August 01, 2016

A new, epidemic strain of C. difficile is proving alarmingly deadly, and new research from the University of Virginia School of Medicine not only explains why but also suggests a way to stop it.

Until now, scientists have not understood what made this strain worse than other strains of the bacteria, the most common cause of hospital-acquired infections. The new strain kills up to 15 percent of infected patients, including those who receive antibiotics, and has become increasingly common over the last 15 years. This has prompted the federal Centers for Disease Control and Prevention to label it an "urgent threat."

A Potent Toxin

The finding comes from the lab of Bill Petri, MD, PhD, chief of UVA's Division of Infectious Diseases and International Health, and a team of international collaborators. PhD student Carrie A. Cowardin was working in Petri's lab when she discovered the diabolical mechanisms this strain of C. diff uses to overcome the body's natural defenses.

The strain is so deadly because it produces a toxin that kills protective cells, called eosinophils, found in the gut, Cowardin found. By destroying the gut's natural barrier, the bacteria can spread inflammation throughout the body. "We think that this toxin makes disease more severe by killing beneficial eosinophils, which seem to play an important role in promoting a healthy immune response during C. difficile infection. When the eosinophils were depleted with an antibody or by the toxin, we saw dramatically increased inflammation. Restoring eosinophils by transferring them from a mouse that cannot recognize the toxin prevented the damage inflicted by the epidemic strain," said Cowardin, now a postdoctoral fellow at Washington University in St. Louis. "This builds on previous work in our lab showing that eosinophils are beneficial and suggests that one reason this strain causes such severe disease is due to its ability to kill these cells."

Further, Cowardin discovered exactly how the toxin works, and how well it functions in this role. The toxin, she determined, requires a particular human protein that recognizes bacteria, a protein that plays a key role in the immune response. In short, C. diff is subverting the body's natural defenses to overcome those defenses.

This understanding of the toxin's action could be of great importance, as blocking it can rescue the protective cells in the gut. And that approach could lead to a new treatment to stop this deadly strain of C. diff in its tracks.

"Nearly every day that I care for patients I am faced with this potentially deadly infection," Petri said. "Carrie Cowardin's discovery of why this strain of C. diff is so dangerous, and most importantly how to combat it, is a huge and most needed advance."
-end-
Findings Published

The findings have been published online by the scientific journal Nature Microbiology. The article was written by Cowardin, Erica L. Buonomo, Mahmoud M. Saleh, Madeline G. Wilson, Stacey L. Burgess, Sarah A. Kuehne, Carsten Schwan, Anna M. Eichhoff, Friedrich Koch-Nolte, Dena Lyras, Klaus Aktories, Nigel P. Minton and Petri.

The research was funded by the National Institutes of Health, grants No. R01AI124214, R01AI026649 and R21AI114734.

University of Virginia Health System

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab