Nav: Home

How the electrodes of lithium-air batteries become passivated

August 01, 2017

Lithium-air batteries are devices, producing power just out of air so they are also called lithium-oxygen batteries. Due to higher energy density they are much lighter than lithium-ion ones. Lithium-air batteries could prove to be much-needed, for instance, for increasing driving range of electric cars on a single charge. However, despite all these advantages, industrial production of lithium-air batteries hasn't started yet since their designers face fundamental problems which can't be overcome for the present.

Artem Sergeev, a Ph.D. student from the Department of Polymer and Crystal Physics at the Solid-state Physics Division of the Faculty of Physics of the Lomonosov Moscow State University, and one the co-authors shares: "A lithium-air battery could potentially have specific energy, which is 3-5 times more than modern lithium-ion batteries. One of the main problems in such batteries' development is electrode passivation, which is transition of the electrode material surface into inactive state. We've obtained new data, concerning the reaction mechanism, and suggested some ideas on how to inhibit electrode passivation. One could use the technique, offered by us, for searching for more appropriate solvents, electrolytes and electrode materials."

Pure oxygen but not air, being a mixture of atmospheric gases, is necessary today for operation of lithium-air batteries. Carbon dioxide and moisture, contained in air, slow down redox reactions, underlying the battery operation. By various estimates, overcoming these obstacles will take from 5 to10 years. The scientists from the Lomonosov Moscow State University study the processes, preventing robust operation of lithium-air batteries.

Alexei Khokhlov, Doctor of Physical and Mathematical Sciences, Academician of RAS, the Head of the Department of Polymer and Crystal Physics at the Faculty of Physics of the Lomonosov Moscow State University and one of the article authors comments: "Generally, in the case of elaboration success the battery should be lithium-air, implying usage of environmental air. Special membranes should separate its undesirable components (moisture, carbon dioxide). But currently there are also more fundamental problems and in order to solve them one usually applies to lithium-oxygen cells, where pure oxygen from gas bottles is delivered."

The cathode (a positive electrode) in a lithium-air battery is represented by a porous carbon sponge, containing in its voids the electrolyte solution with lithium ions. The cathode contacts with the outside gas environment, what is necessary to provide oxygen delivery to the electrolyte, which is a liquid ion conductor. The scientists have simulated the interface between the electrode and electrolyte solution at the cathode of a lithium-air battery and offered an approach for inhibiting electrode passivation. The researchers have used the supercomputer complex of the Lomonosov Moscow State University for all-atom simulation with the help of molecular dynamics methods.

Alexei Khokhlov explains: "There is quite a number of parallel processes and reactions, occurring at the cathode while lithium-air battery operates. Unfortunately, experimental study of separate stages of these processes often turns out to be impossible, while simulation of separate stages of the reactions with the help of supercomputers allows to trace basic trend in the stages of interest."

The scientists have found out that reduction of superoxide anion (a strong inorganic oxidizer - O2-), leading to electrode passivation, is possible only after its binding with lithium cation.

Alexei Khokhlov sums up: "We've understood that formation of non-conductive discharge products right on the electrode surface (its passivation) takes place only after binding of an intermediate (superoxide anion) with lithium ions, which concentration is high near the electrode surface. If you displace them out, passivation won't, probably, proceed so rapidly."

The project has been done in cooperation with scientists from Ulm University, Germany.

Lomonosov Moscow State University

Related Physics Articles:

Diamonds coupled using quantum physics
Researchers at TU Wien have succeeded in coupling the specific defects in two such diamonds with one another.
The physics of wealth inequality
A Duke engineering professor has proposed an explanation for why the income disparity in America between the rich and poor continues to grow.
Physics can predict wealth inequality
The 2016 election year highlighted the growing problem of wealth inequality and finding ways to help the people who are falling behind.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Flowers use physics to attract pollinators
A new review indicates that flowers may be able to manipulate the laws of physics, by playing with light, using mechanical tricks, and harnessing electrostatic forces to attract pollinators.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
2-D physics
Physicist Andrea Young receives a 2016 Packard Fellowship to pursue his studies of van der Waals heterostructures.
Cats seem to grasp the laws of physics
Cats understand the principle of cause and effect as well as some elements of physics.
Plasma physics' giant leap
For the first time, scientists are looking at real data -- not computer models, but direct observation -- about what is happening in the fascinating region where the Earth's magnetic field breaks and then joins with the interplanetary magnetic field.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Physics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...