Nav: Home

Bird with super senses inspires researchers

August 01, 2017

Not much surprises the oilbird. Its senses are super sharp and when combined, may function in a way that can inspire researchers to construct better drones and more advanced technology.

All animals use a combination of several different senses to cope. But where the majority typically rely on one or two sensory systems, which are especially sensitive, the oilbird excels by apparently having keen senses all-around.

In addition to its extremely sensitive vision, the oilbird has the neural foundation for an excellent sense of smell, bristles by the beak for tactile sensation and it also uses its hearing for echolocation, which we find otherwise pretty much only in bats and toothed whales.

- This complex sensory apparatus, where the animal has the ability to combine input from so many well-developed senses, is interesting to study, says Signe Brinkløv, postdoc in the Sound, Communication and Behaviour Group at the Department of Biology, University of Southern Denmark.

As a biologist, she is interested in understanding how the oilbird uses its senses to achieve the best possible conditions in its natural surroundings.

From a more applied perspective, she is fascinated by how researchers' knowledge of animal sensory systems can be used in the world of humans.

- We can come a long way towards understanding the individual sense. But when we begin to study how the senses complement each other and how the balance between different sensory inputs affects the behaviour of the animal when it tackles various challenges, it becomes a very complex study, which is difficult to transfer from laboratory to natural conditions. If we can learn more about it, perhaps we can transfer the knowledge to technological developments, she says.

An example is the interaction between vision and the sense of hearing, which the animal uses when it echolocates.

With echolocation, the animal emits sounds that are returned as echoes from the surroundings and enables it to judge for example distance to the surroundings or distinguish between, e.g., food items and a rock face.

- Today, drones are often controlled manually by a drone operator who is dependent on the video footage from the drone and thus the sense of sight in order to control it. But it quickly becomes difficult to navigate with such a system in darkness or when visibility is poor. If, on the other hand, you could combine the sense of sight and echolocation on a drone so it navigates based on input from both systems, then more opportunities open up. For instance, it could fly safely and perhaps autonomously in the dark or in between trees in a forest, says Signe Brinkløv.

Signe Brinkløv and her colleagues have studied the echolocation of oilbirds in Trinidad. Oilbirds are nocturnal and live in caves with up to several thousand individuals together. Every night they leave the cave to find food.

Their ability to echolocate enables them to navigate to and from their nests without bumping into the rocky walls of the cave, even in pitch black darkness.

The researchers hope that with further studies of the oilbird which investigate the interaction between vision and echolocation, a model can be developed that can be used by sensory researchers and robotics engineers.

The study was published in Royal Society Open Science.

The study is based on sound recordings of echolocating cave-dwelling oilbirds at Asa Wright Nature Centre, Trinidad. The study has been published in Royal Society Open Science. The authors are Signe Brinkløv, Coen Elemans and John Ratcliffe.

Signe Brinkløv is a biologist at Department of Biology. Apart from birds, she also studies porpoise and bat communication.

The oilbird (Steatornis caripensis) got its name because the fledglings, just before leaving the nest, become so fat that their weight exceeds that of the adults. Just like whales, oilbirds have been used in the past for extraction of oil. Oilbirds also produce other sounds than their echolocation signals which has led to several Spanish nicknames, including Guácharo and Diablotin (little devil), reflecting ghostly sounding calls which led the local Indians to compare the entrance to the birds' caves with that to the land of the dead.
-end-


University of Southern Denmark

Related Echolocation Articles:

Exploring the potential of human echolocation
People who are visually impaired will often use a cane to feel out their surroundings.
Can you hear me now?
When trying to be heard over noise, humans and animals raise their voices.
For horseshoe bats, wiggling ears and nose makes biosonar more informative
Virginia Tech researchers have discovered that these tiny movements pack more information into ultrasound pulses the bats send and receive, helping them locate objects around them.
Newborn harbor porpoises have the fastest hearing development among mammals
All mammals can hear -- but it is not an ability that is fully developed at birth.
JNeurosci: Highlights From the Feb. 8 Issue
Check out these newsworthy studies from the Feb. 8, 2017, issue of JNeurosci.
Echolocation: Sizing up spaces by ear
Humans can be trained to use echolocation to estimate the sizes of enclosed spaces.
How navigational goals are represented in the bat brain
In bats, researchers have identified a subpopulation of neurons that represent navigational goals, a new study reports.
What role does mouth shape play for echolocating bats?
While studying bats, researchers noticed a large group of muscles running straight down the middle of the top of the bat's skull.
Narwhal echolocation beams may be the most directional of any species
Analysis of some of the first recordings of wintering narwhals showed that they may have the most directional sonar of any species, according to a study published Nov.
Blind as bats: Echolocation study reveals key evolutionary trade-offs with other senses
A research team has performed a new comparative study of two sophisticated echolocating bats.

Related Echolocation Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.