Ferroelectric phenomenon proven viable for oxide electrodes, disproving predictions

August 01, 2017

WASHINGTON, D.C., August 1, 2017 -- Flux-closure domain (FCD) structures are microscopic topological phenomena found in ferroelectric thin films that feature distinct electric polarization properties. These closed-loop domains have garnered attention among researchers studying new ferroelectric devices, ranging from data storage components and spintronic tunnel junctions to ultra-thin capacitors.

In the development of thin films for such devices, researchers have thought that contact with commonly used oxide electrodes limits FCD formation. However, a group of researchers in China has shown otherwise. The findings are reported this week as the cover article in Applied Physics Letters, from AIP Publishing.

Ferroelectric materials are typically developed and studied as thin films, sometimes as thin as only a few nanometers. As a result, researchers have begun discovering the abundant domain structures and unique physical properties that these ferroelectrics possess, such as skyrmion and FCD formation that could benefit next-generation electronic devices. Because the films are so thin, however, their interaction with electrodes is inevitable.

"The general thinking has been that oxide electrodes would destabilize flux-closure domains. However, our work has shown that this is no longer true when the top and bottom electrodes are symmetric, which physically makes sense," said Yinlian Zhu, professor at the Institute of Metal Research at the Chinese Academy of Sciences and a co-author of the paper.

Zhu and colleagues used two types of oxide electrodes: one based on strontium ruthenate, the other based on lanthanum strontium manganite, chosen as oxide electrodes because of their similar perovskite structures, which work well in layer-by-layer film growth. They studied how these electrodes influenced FCD formation in PbTiO3 (PTO) perovskite-oxide-based thin films deposited on gadolinium scandium oxide (GSO) substrates.

The research team's previous studies indicated that flux-closure domains can be stabilized in strained ferroelectric films in which the strain plays a critical role in the formation of flux-closure domains, such as multilayer PTO/strontium titanate systems grown on GSO-based (specifically GdScO3) substrates.

Based on their previous studies, the researchers consequently anticipated that similar phenomenon might also occur in PTO/electrode systems. They then grew PTO films sandwiched between symmetric oxide electrodes on GSO substrates using pulsed laser deposition.

They found that periodic FCD arrays can be stabilized in PTO films when the top and bottom electrodes are symmetric, while alternating current domains appear when they apply asymmetric electrodes.

"We successfully grew ferroelectric thin films with symmetric oxide electrodes in which flux-closure domains and their periodic arrays clearly do exist," Zhu said. "Our work sheds light on understanding the nature of flux-closure domains in ferroelectrics. We expect that it will open research possibilities in the evolution of these structures under external electric fields."
-end-
The article, "Periodic arrays of flux-closure domains in ferroelectric thin films with oxide electrodes," is authored by S. Li, Y.L. Zhu, Y.J. Wang, Y.L. Tang, Y. Liu, S.R. Zhang, J.Y. Ma and X.L. Ma. The article appeared in Applied Physics Letters July 31, 2017 (DOI: 10.1063/1.4996232). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4996232.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org.

American Institute of Physics

Related Electrodes Articles from Brightsurf:

Performance test for neural interfaces
Freiburg researchers develop guidelines to standardize analysis of electrodes.

The perfect angle for e-skin energy storage
Researchers at DGIST have found an inexpensive way to fabricate tiny energy storage devices that can effectively power flexible and wearable skin sensors along with other electronic devices, paving the way towards remote medical monitoring & diagnoses and wearable devices.

Vacancy dynamics on CO-covered Pt(111) electrodes
USTC reported in situ video-STM observations of additional point defects in the presence of this dynamic CO adlayer.

Using tiny electrodes to measure electrical activity in bacteria
Scientists at Laboratory of Organic Electronics, Linköping University, have developed an organic electrochemical transistor that they can use to measure and study in fine detail a phenomenon known as extracellular electron transfer in which bacteria release electrons.

Flow-through electrodes make hydrogen 50 times faster
Duke chemists tested three new materials as a porous, flow-through electrode to make hydrogen from electrolysis.

Novel electric impulses relieve the pain
Chronic pain can be reduced by stimulating the vagus nerve in the ear with electrodes.

Visualization of functional components to characterize optimal composite electrodes
Researchers have developed a visualization method that will determine the distribution of components in battery electrodes using atomic force microscopy.

Electrolysis: Chemists have discovered how to produce better electrodes
Another step forward for renewable energies: The production of green hydrogen could be even more efficient in the future.

KIST develops large-scale stretchable and transparent electrodes
A Korean research team has developed a large-scale stretchable and transparent electrode for the stretchable display.

Key progress on the MRI compatible DBS electrodes and simultaneous DBS-fMRI
Recently, collaboration between Dr. Duan Xiaojie's group (Department of Biomedical Engineering, College of Engineering, Peking University) and Dr.

Read More: Electrodes News and Electrodes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.