Nav: Home

Genome sequencing shows spiders, scorpions share ancestor

August 01, 2017

In collaboration with scientists from the U.K., Europe, Japan and the United States, researchers at the Human Genome Sequencing Center at Baylor College of Medicine have discovered a whole genome duplication during the evolution of spiders and scorpions. The study appears in BMC Biology.

Researchers have long been studying spiders and scorpions for both applied reasons, such as studying venom components for pharmaceuticals and silks for materials science, and for basic questions such as the reasons for the evolution and to understand the development and ecological success of this diverse group of carnivorous organisms.

As part of a pilot project for the i5K, a project to study the genomes of 5,000 arthropod species, the Human Genome Sequencing Center analyzed the genome of the house spider Parasteatoda tepidariorum - a model species studied in laboratories - and the Arizona bark scorpion Centruroides sculpturatus, - the most venomous scorpion in North America.

Analysis of these genomes revealed that spiders and scorpions evolved from a shared ancestor more than 400 million years ago, which made new copies of all of the genes in its genome, a process called whole genome duplication. Such an event is one of the largest evolutionary changes that can happen to a genome and is relatively rare during animal evolution.

Dr. Stephen Richards, associate professor in the Human Genome Sequencing Center, who led the genome sequencing at Baylor, said, "It is tremendously exciting to see rapid progress in our molecular understanding of a species that we coexist with on planet earth. Spider genome analysis is particularly tricky, and we believe this is one of the highest quality spider genomes to date."

Similarly, there also have been two whole genome duplications at the origin of vertebrates, fuelling long-standing debate as to whether the duplicated genes enabled new biological complexity in the evolution of the vertebrate lineage leading to mammals. The new finding of a whole genome duplication in spiders and scorpions therefore provides a valuable comparison to the events in vertebrates and could help reveal genes and processes that have been important to our own evolution.

"While most of the new genetic material generated by whole genome duplication is subsequently lost, some of the new gene copies can evolve new functions and may contribute to the diversification of shape, size, physiology and behavior of animals," said Dr. Alistair McGregor, professor of evolutionary developmental biology at Oxford Brookes University and lead author of the research. "Comparing the whole genome duplication in spiders and scorpions with the independent events in vertebrates reveals a striking similarity. In both cases, duplicated clusters of Hox genes have been retained. These are very important genes that regulate development of body structures in all animals, and therefore can cause evolutionary changes in animal body plans."

The study also found that the copies of spider Hox genes show differences in when and where they are expressed, suggesting they have evolved new functions.

McGregor explains that these changes may help clarify the evolutionary innovations in spiders and scorpions including specialized limbs and how they breathe, as well as the production of different types of venom and silk, which spiders use to capture and kill their prey.

"Many people fear spiders and scorpions, but this research shows what a beautiful part of the evolutionary tree they represent," said Dr. Richard Gibbs, director of the Human Genome Sequencing Center and the Wofford Cain Chair and professor of molecular and human genetics at Baylor.

"Costs have now dropped rapidly enough from tens of millions of dollars to merely a few thousand dollars for this genomic analyses to now be performed on any species," Richards said. "There is still so much more to learn about the life on earth around us, and I believe this result is just the beginning of understanding the molecular make up of spiders."

For a full list of contributors and funding sources, click here.
-end-


Baylor College of Medicine

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...