Nav: Home

Noise helps cells make decisions

August 01, 2017

Random differences between cells early in development could be the key to making different cells in the body, according to new research from a team co-led by Professor Wolf Reik. Different cell types - brain, blood, skin, gut etc. - all have unique and vital roles, yet they all start out the same. Cells become different as a result of a long sequence of biochemical choices made before we're born. For us to be healthy, these choices need to ensure we get the right number of each cell type.

Scientists at the Babraham Institute, EMBL-EBI and the Wellcome Trust-Medical Research Council Stem Cell Institute examined the genetics of stem cells from embryos at the earliest stages of development. Typically, cells of the same type have matching patterns of gene activity - many of the same genes are turned off or on in all cells. This latest research, published in the journal Cell Reports reveals that when cells start specialising into different cell types their gene activity becomes more 'noisy' - each cell starts to turn different groups of genes on or off.

The results, which focus on two choices near the start of embryo formation, show that, when cells are making decisions about what to become, there is greater variation in the activity of the genes in different cells - the same genes may be turned on in some cells and off in others. By chance this noise will make some cells more likely to become one type of cell, whilst others will start to favour an alternative.

The paper's co-first authors were Hisham Mohammed, Irene Hernando-Herraez and Aurora Savino. Dr Mohammed at the Babraham Institute, said: "Our analyses suggest that elevated transcriptional noise at two key points in early development coincides with cell fate decisions. By contrast, after these decisions cells become highly synchronised and grow rapidly. Our study systematically charts transcriptional noise and uncovers new processes associated with early lineage decisions."

This process of making similar cells become different is called symmetry breaking. This study marks the first time that a technique called single-cell sequencing has been used to examine individual cells from mouse embryos in the early stages of development. Previous research has only examined groups of cells, so it has been impossible to investigate the differences between cells during symmetry breaking.

Co-senior author Professor Jennifer Nichols at the Wellcome Trust-Medical Research Council Stem Cell Institute, said: "Our data allow us to study gene activity in individual cells to an unprecedented level of precision. This detail has allowed us to observe substantial differences between cells. Regulating noisy gene activity during development may be a key part of how cells make decisions about their future. In the future we hope to discover how this process is controlled to better understand how noise shapes early development."

As the lead computational scientist on the paper, Dr John Marioni at EMBL-EBI, said: "Making sense of the data generated in studies like this is only possible thanks to ongoing advances in computational biology. With more than 10,000 pieces of data being collected about each individual cell, modern computers are essential in achieving the level of sensitivity needed for this type of research."
-end-


Babraham Institute

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Related Genes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...