Nav: Home

Safely releasing genetically modified genes into the wild

August 01, 2017

So, you've genetically engineered a malaria-resistant mosquito, now what? How many mosquitos would you need to replace the disease-carrying wild type? What is the most effective distribution pattern? How could you stop a premature release of the engineered mosquitos?

Releasing genetically engineered organisms into an environment without knowing the answers to these questions could cause irreversible damage to the ecosystem. But how do you answer these questions without field experiments?

Applied mathematicians and physicists from Harvard and Princeton Universities used mathematical modeling to guide the design and distribution of genetically modified genes that can both effectively replace wild mosquitos and be safely controlled.

The research was recently published in the Proceedings of the National Academy of Sciences.

In the normal course of evolution, any specific trait has only a modest chance of being inherited by offspring. But, with the development of the CRISPR-Cas9 gene editing system, researchers can now design systems that increase the likelihood of inheritance of a desired trait to nearly 100 percent, even if that trait confers a selective disadvantage. These so-called gene drives could replace wild-type genes in short generations.

Those powerful systems raise serious safety concerns, such as what happens if a genetically-engineered mosquito accidentally escapes from a lab?

"An accidental or premature release of a gene drive construct to the natural environment could damage an ecosystem irreversibly," said Hidenori Tanaka, first author of the paper and graduate student in the Harvard John A. Paulson School of Engineering and Applied Sciences and the Physics Department.

To protect against such releases, Tanaka, along with co-authors David Nelson, the Arthur K. Solomon Professor of Biophysics and Professor of Physics and Applied Physics and Howard Stone of Princeton, proposed a narrow range of selective disadvantages that would allow the genes to spread, but only after a critical threshold had been reached.

The researchers used nonlinear reaction-diffusion equations to model how genes would move through space. These models provided a framework to develop socially responsible gene drives that balance the genetically-engineered traits with embedded weaknesses that would protect against accidental release and uncontrollable spreading.

"We can, in effect, construct switches that initiate and terminate the gene drive wave," said Tanaka. "In one, carefully chosen regime, the spatial spreading of the wave starts or progresses only when the parameters of the inoculation exceed critical values that we can calculate."

To reach that critical mass, the researchers found that genes needed to be released intensely in a specific region -- like a genetic bomb -- rather than spread thinly throughout larger regions. The genes spread only when the nucleus of the genetic explosion exceeds a critical size and intensity.

The researchers also found that by making gene drives susceptible to a compound harmless to wildtype genes, the spread of gene drives can be stopped by barriers like pesticides.

"This research illustrates how physicists and applied mathematicians can build on results of biological experimentation and theory to contribute to the growing field of spatial population genetics," said Nelson.

Next, the researchers hope to understand the impact of genetic mutations and organism number fluctuations on gene drives.
-end-
The paper was coauthored by Howard Stone, the Donald R. Dixon '69 and Elizabeth W. Dixon Professor of Mechanical and Aerospace Engineering and Department Chair at Princeton University.

This research was supported by the National Science Foundation through the Division of Materials Research, Condensed Matter and Materials Theory and through the Harvard Materials Science Research and Engineering Center.

Harvard John A. Paulson School of Engineering and Applied Sciences

Related Genes Articles:

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.
Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.
New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.
Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.
How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.
Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.
The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.
Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.
New genes on 'deteriorating' Y chromosome
Decoding Y chromosomes is difficult even with latest sequencing technologies.
Newly revealed autism-related genes include genes involved in cancer
Researchers in Italy have applied a computational technique that accounts for how genes interact, to find new networks of related genes that may be involved in autism spectrum disorder.
More Genes News and Genes Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab