Nav: Home

Aye group discovers avenue for precision cancer treatment

August 01, 2017

ITHACA, N.Y. - One of the goals of personalized medicine is to be able to determine which treatment would work best by sequencing a patient's genome. New research from the lab of Yimon Aye, assistant professor of chemistry and chemical biology, could help make that approach a reality.

Using her group's novel chemical procedure dubbed "T-REX," along with a patent-pending targeting molecule also developed in her lab, Aye and her group have uncovered interesting facets of several well-known cancer-cell mutations that, if present in a patient, could inform treatment options and potentially produce more favorable outcomes.

"People wonder why certain drugs are more efficient in one individual over another," said Aye, a Milstein Sesquicentennial Fellow in the College of Arts and Sciences who also has a joint appointment in the Department of Biochemistry at Weill Cornell Medicine. "Our discovery gives us a foundation to think about and design inhibitors that will ... be much more effective in the patients carrying certain mutations."

The Aye Lab has published two related papers on this discovery in the last couple of months, both in Cell Chemical Biology. "Privileged Electrophile Sensors: A Resource for Covalent Drug Development" was published online June 22; "β-TrCP1 Is a Vacillatory Regulator of Wnt Signaling" was published online July 20.

The first paper explains how reduction-oxidation, or redox, signaling -- which is commonplace inside cells -- affects the activity of specific enzymes, and how certain enzymes' redox-specific processes could be harnessed for targeted drug design.

Research for the second paper started to test that theory. To determine which signals are affecting the response of a particular protein, the group used its T-REX procedure coupled with a widely used strategy to deplete the cell of a specific protein of interest.

One challenge is that multiple variations, or isoforms, of the same protein can all catalyze the same cellular function, "but the nuances of biology rest in how individual isoforms are regulated," Aye said.

"Some may be important in only certain types of tumors, or certain types of cells, so being able to discriminate one isoform over the other is important," she said.

The group's first key finding: The "cross-talk," or interaction back and forth, between cell signaling pathways is regulated depending on the concentration of a certain transcription factor (Nrf2), a fact that isn't clear unless you are able to selectively stimulate Nrf2 signaling, a method Aye pioneered.

The second, and perhaps more interesting in terms of disease: A key mutation of cancer cells on the N-terminus -- the start of a protein chain, which often contains key signaling information -- would make them more susceptible to certain targeted therapeutics than those without the mutation.

"What we've discovered as a strategy is a means to target this pathway in the cancer cells that carry selective mutations on this domain [the N terminus]," Aye said. "Potentially, patients can be genotyped to see if they carry these mutations, and they should respond much better to small molecules that activate antioxidant response."

Aye said understanding the many complexities of oncogenesis and cell signaling is crucial to developing better therapies for cancer and other diseases. "We could design much more selective therapeutics by understanding the underlying cross-talk," she said.
-end-
Marcus J.C. Long, a postdoctoral researcher in the Aye Lab, was lead author on the first paper and co-lead with former postdoc Hong-Yu Lin on the second. Other contributors included current postdoc Yi Zhao, doctoral students Saba Parvez and Jesse Poganik, and undergraduate chemistry and biology major Paul Huang '18. All are members of the Aye Lab and the Department of Chemistry and Chemical Biology.

This work was supported by grants from the National Science Foundation, the National Institutes of Health, the Sloan Fellowship, the Beckman Foundation and the Office of Naval Research.

Cornell University

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...