Aye group discovers avenue for precision cancer treatment

August 01, 2017

ITHACA, N.Y. - One of the goals of personalized medicine is to be able to determine which treatment would work best by sequencing a patient's genome. New research from the lab of Yimon Aye, assistant professor of chemistry and chemical biology, could help make that approach a reality.

Using her group's novel chemical procedure dubbed "T-REX," along with a patent-pending targeting molecule also developed in her lab, Aye and her group have uncovered interesting facets of several well-known cancer-cell mutations that, if present in a patient, could inform treatment options and potentially produce more favorable outcomes.

"People wonder why certain drugs are more efficient in one individual over another," said Aye, a Milstein Sesquicentennial Fellow in the College of Arts and Sciences who also has a joint appointment in the Department of Biochemistry at Weill Cornell Medicine. "Our discovery gives us a foundation to think about and design inhibitors that will ... be much more effective in the patients carrying certain mutations."

The Aye Lab has published two related papers on this discovery in the last couple of months, both in Cell Chemical Biology. "Privileged Electrophile Sensors: A Resource for Covalent Drug Development" was published online June 22; "β-TrCP1 Is a Vacillatory Regulator of Wnt Signaling" was published online July 20.

The first paper explains how reduction-oxidation, or redox, signaling -- which is commonplace inside cells -- affects the activity of specific enzymes, and how certain enzymes' redox-specific processes could be harnessed for targeted drug design.

Research for the second paper started to test that theory. To determine which signals are affecting the response of a particular protein, the group used its T-REX procedure coupled with a widely used strategy to deplete the cell of a specific protein of interest.

One challenge is that multiple variations, or isoforms, of the same protein can all catalyze the same cellular function, "but the nuances of biology rest in how individual isoforms are regulated," Aye said.

"Some may be important in only certain types of tumors, or certain types of cells, so being able to discriminate one isoform over the other is important," she said.

The group's first key finding: The "cross-talk," or interaction back and forth, between cell signaling pathways is regulated depending on the concentration of a certain transcription factor (Nrf2), a fact that isn't clear unless you are able to selectively stimulate Nrf2 signaling, a method Aye pioneered.

The second, and perhaps more interesting in terms of disease: A key mutation of cancer cells on the N-terminus -- the start of a protein chain, which often contains key signaling information -- would make them more susceptible to certain targeted therapeutics than those without the mutation.

"What we've discovered as a strategy is a means to target this pathway in the cancer cells that carry selective mutations on this domain [the N terminus]," Aye said. "Potentially, patients can be genotyped to see if they carry these mutations, and they should respond much better to small molecules that activate antioxidant response."

Aye said understanding the many complexities of oncogenesis and cell signaling is crucial to developing better therapies for cancer and other diseases. "We could design much more selective therapeutics by understanding the underlying cross-talk," she said.
-end-
Marcus J.C. Long, a postdoctoral researcher in the Aye Lab, was lead author on the first paper and co-lead with former postdoc Hong-Yu Lin on the second. Other contributors included current postdoc Yi Zhao, doctoral students Saba Parvez and Jesse Poganik, and undergraduate chemistry and biology major Paul Huang '18. All are members of the Aye Lab and the Department of Chemistry and Chemical Biology.

This work was supported by grants from the National Science Foundation, the National Institutes of Health, the Sloan Fellowship, the Beckman Foundation and the Office of Naval Research.

Cornell University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.