Nav: Home

Sunscreen for dancing molecules

August 01, 2018

Since life is mostly based on water, our molecules are moving, vibrating and somersaulting in a liquid environment. But electron microscopy, a superb instrument to study a static version of the nanoworld, has been almost impossible to use to see moving molecules because the incident electron beam damages the samples. Scientists at the Center for Soft and Living Matter, within the Institute for Basic Science (IBS), now report a big improvement. This study, published in ACS Nano, is the first to use heavy water (D2O) - a form of water that contains deuterium (D) instead of hydrogen - in the field of transmission electron microscopy (TEM). This approach significantly delays sample damage, which is one of the major impediments for broader application of liquid-phase TEM to fragile biological samples.

In electron microscopy, electrons shot against the sample have a much shorter wavelength than light, so they are better suited to provide information about single molecules. On the other hand, the electron beam is violently strong and risks damaging the specimen due to its high energy, which generates an electric charge and breaks the chemical bonds. 

IBS researchers used a tiny pocket filled with liquid sandwiched between atomically-thin sheets of graphene, within which the sample molecules are free to move and are protected from electrical charging, and tested several types of liquids to find the one that preserves the sample longer. "In contrast to the common approach of reducing the energy of the electron beam to delay sample damage, we focused on tuning the environment; the water in which the molecules of interest are dissolved," says Huan Wang, co-author of the study. 

IBS scientists have shown that use of heavy water has several advantages over competing methods. D2O delays most effectively not only the formation of gas bubbles, but also structural damage of individual polymer molecules. Compared to H2O, D2O has one more neutron, which means that it is heavier, thus more difficult to dissociate into radicals, and less reactive in the subsequent damaging process.

"Heavy water outperforms the competing methods by a factor of two to five at least," specified Kandula Hima Nagamanasa, co-author of the study. "Since bubble formation is delayed, and the molecules were visible for twice as long." 

An equally important advantage is that D2O is a harmless sunscreen. The sample, a polymer of polystyrene sulfonate in this case, showed the same pattern of dynamics and similar contrast in D2O and in water. 

"In the future, we plan to extend this study to more complex macromolecules, like DNA and proteins," explained Steve Granick, director of the IBS center and corresponding author of the study. "Moreover, the study opens avenues to observe long-term phenomena in other related microscopy techniques, like cryoEM (cryogenic electron microscopy), and to get more statistical information about complex phenomena, like self-assembly of single molecules into more complex biological structures."
-end-


Institute for Basic Science

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
At attention, molecules!
University of Iowa chemists have learned about a molecular assembly that may help create quicker, more responsive touch screens, among other applications.
Folding molecules into screw-shaped structures
An international research team describes the methods of winding up molecules into screw-shaped structures.
Artificial molecules
A new method allows scientists at ETH Zurich and IBM to fabricate artificial molecules out of different types of microspheres.
Molecules that may keep you young and alive
A new study may have uncovered the fountain of youth: plant extracts containing the six best groups of anti-aging molecules ever seen.
Fun with Lego (molecules)
A great childhood pleasure is playing with LegosĀ® and marveling at the variety of structures you can create from a small number of basic elements.

Related Molecules Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...