Nav: Home

Insight into catalysis through novel study of X-ray absorption spectroscopy

August 01, 2018

Many important processes in nature depend on catalysts, which are atoms or molecules that facilitate a reaction, but emerge from it themselves unchanged. One example is photosynthesis in plants, which is only possible with the help of a protein complex comprising four manganese atom sites at its centre. Redox reactions, as they are referred to, often play a pivotal role in these types of processes. The reactants are reduced through uptake of electrons, or oxidized through their release. Catalytic redox processes in nature and industry often only succeed thanks to suitable catalysts, where transition metals supply an important function.

Soft x-rays at BESSY II

These transition metals and in particular their redox or oxidation state can be examined particularly well using soft X-rays, because electronic states can be precisely measured using X-ray spectroscopy. In what is known as L-edge absorption spectroscopy, electrons from the 2p shell of the transition metal are excited so that they occupy free d-orbitals. An energy difference can be determined from the X-ray absorption spectrum that reflects the oxidation state of the molecule or the catalyst in a known way. However, exactly where the electrons are absorbed or released by the catalyst during a redox reaction, i.e. exactly how the charge density in the catalyst varies with oxidation state, was previously difficult to verify. This was mainly due to the lack of reliable methods for the theoretical description of charge densities in catalyst molecules in ground and excited states, and to the difficulty in obtaining reliable experimental data. If the transition metals are located in larger complex organic molecule complexes, as they typically are for real redox catalysts, their study becomes extremely difficult because the X-rays lead to damage in the sample.

Sample in solution examined in different oxidation states

Now for the first time, an international team from the Helmholtz-Zentrum Berlin, Uppsala University (Sweden), Lawrence Berkeley National Laboratory in Berkeley (USA), Manchester University (Great Britain), and the SLAC National Accelerator Laboratory at Stanford University (USA) has succeeded in studying manganese atoms in different oxidation states - i.e. during different stages of oxidation - in various compounds through in operando measurements at BESSY II. To accomplish this, Philippe Wernet and his team introduced the samples into various solvents, examined jets of these liquids using X-rays, and compared their data against novel calculations from Marcus Lundberg's group at Uppsala University. "We succeeded in determining how - and above all why - the X-ray absorption spectra shift with the oxidation states", says theoretician Marcus Lundberg. PhD students Markus Kubin (HZB) with his experimental expertise and Meiyuan Guo (Uppsala University) with his theoretical expertise reflect the interdisciplinary approach of the study and they contributed equally as first authors of the paper.

Breakthrough through a combination of theory and experiment

"We combined a novel experimental setup with quantum chemical calculations. In our opinion, we have achieved a breakthrough in the understanding of organometallic catalysts", says Wernet. "For the first time, we were able to empirically test and validate calculations for oxidation and reduction that do not take place locally on the metal, but instead on the entire molecule." "These findings are a cornerstone for future work in more complex systems, like the tetra manganese cluster in photosynthesis. They will facilitate new understanding of redox processes for the manganese catalyst in the Photosystem II protein complex", says Junko Yano, Senior Scientist of Molecular Biophysics and Integrated Bioimaging Division (MBIB) and the Joint Center for Artificial Photosynthesis (JCAP) at Lawrence Berkeley National Laboratory, who is conducting detailed research of photosynthesis.
-end-


Helmholtz-Zentrum Berlin für Materialien und Energie

Related Photosynthesis Articles:

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.
Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.
Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.
Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.
Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.
Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.
Just how much does enhancing photosynthesis improve crop yield?
In the next two decades, crop yields need to increase dramatically to feed the growing global population.
Algal library lends insights into genes for photosynthesis
To identify genes involved in photosynthesis, researchers built a library containing thousands of single-celled algae, each with a different gene mutation.
New molecular blueprint advances our understanding of photosynthesis
Researchers at Lawrence Berkeley National Laboratory have used one of the most advanced microscopes in the world to reveal the structure of a large protein complex crucial to photosynthesis, the process by which plants convert sunlight into cellular energy.
Structure and function of photosynthesis protein explained in detail
An international team of researchers has solved the structure and elucidated the function of photosynthetic complex I.
More Photosynthesis News and Photosynthesis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.