Nav: Home

UCF professor discovers a first-of-its-kind material for the quantum age

August 01, 2018

A UCF physicist has discovered a new material that has the potential to become a building block in the new era of quantum materials, those that are composed of microscopically condensed matter and expected to change our development of technology.

Researchers are entering the Quantum Age, and instead of using silicon to advance technology they are finding new quantum materials, conductors that have the ability to use and store energy at the subatomic level.

Assistant Professor Madhab Neupane has spent his career learning about the quantum realm and looking for these new materials, which are expected to become the foundation of the technology to develop quantum computers and long-lasting memory devices. These new devices will increase computing power for big data and greatly reduce the amount of energy required to power electronics.

Big companies recognize the potential and they are investing in research. Microsoft has invested in its Station Q, a lab dedicated solely to studying the field of topological quantum computing. Google has teamed up with NASA on a Quantum AI Lab that studies how quantum computing and artificial intelligence can mesh. Once the quantum phenomena are well understood and can be engineered, the new technologies are expected to change the world, much like electronics did at the end of the 20th century.

Neupane's discovery, published today in Nature Communications is a big step in making that reality happen.

"Our discovery takes us one step closer to the application of quantum materials and helps us gain a deeper understanding of the interactions between various quantum phases," Neupane said.

The material Neupane and his team discovered, Hf2Te2P - chemically composed of hafnium, tellurium and phosphorus -- is the first material that has multiple quantum properties, meaning there is more than one electron pattern that develops within the electronic structure, giving it a range of quantum properties.

Neupane's research group is using its specialized equipment for advanced-spectroscopic characterization of quantum materials to develop their work further.

"With the discovery of such an incredible material, we are at the brink of having a deeper understanding of the interplay of topological phases and developing the foundation for a new model from which all technology will be based off, essentially the silicon of a new era," Neupane said.
This study was funded by the Air Force Office of Scientific Research and was conducted in collaboration with Tomasz Durakiewicz from Los Alamos National Laboratory, Raman Sankar and Fangcheng Chou from National Taiwan University in Taiwan, Peter Oppeneer from Uppsala University in Sweden, and Dariusz Kaczorowski from Polish Academy of Science in Poland. Neupane led the team of researchers that included UCF graduate students M. Mofazzel Hosen, Gyanendra Dhakal, Firoza Kabir, and Christopher Sims, and undergraduate student Klauss Dimitri.

Neupane came to UCF in 2016 after completing postdoctoral studies at Princeton University and Los Alamos National Laboratory. He has been part of the frontier of quantum materials research since 2011.

UNIVERSITY OF CENTRAL FLORIDA. Founded in 1963 with a commitment to expanding opportunity and demanding excellence, the University of Central Florida develops the talent needed to advance the prosperity and welfare of our society.

With more than 66,000 students, UCF is one of the nation's largest universities, offering more than 200 degree programs at its main campus in Orlando and more than a dozen other locations in Central Florida and online.

UCF was ranked by U.S. News & World Report as among the nation's top 25 most innovative universities along with Harvard, Stanford and Duke, and has been described by The Washington Post as "part of a vanguard that is demolishing the popular belief that exclusivity is a virtue in higher education." For more information, visit

University of Central Florida

Related Quantum Computing Articles:

A platform for stable quantum computing, a playground for exotic physics
Harvard University researchers have demonstrated the first material that can have both strongly correlated electron interactions and topological properties, which not only paves the way for more stable quantum computing but also an entirely new platform to explore the wild world of exotic physics.
Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.
'Valley states' in this 2D material could potentially be used for quantum computing
New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing.
Sound of the future: A new analog to quantum computing
In a paper published in Nature Research's journal, Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
Virginia Tech researchers lead breakthrough in quantum computing
A team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer.
Limitation exposed in promising quantum computing material
Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a candidate to create qubits for quantum computing due to its special properties.
New material shows high potential for quantum computing
A joint team of scientists at the University of California, Riverside, and the Massachusetts Institute of Technology is getting closer to confirming the existence of an exotic quantum particle called Majorana fermion, crucial for fault-tolerant quantum computing -- the kind of quantum computing that addresses errors during its operation.
A sound idea: a step towards quantum computing
Researchers at the University of Tsukuba and the University of Pittsburgh have developed a new method for using lasers to create tiny lattice waves inside silicon crystals that can encode quantum information.
Quantum computing boost from vapour stabilising technique
A technique to stabilise alkali metal vapour density using gold nanoparticles, so electrons can be accessed for applications including quantum computing, atom cooling and precision measurements, has been patented by scientists at the University of Bath.
More Quantum Computing News and Quantum Computing Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab